2023屆浙江省湖州市吳興區(qū)十校聯(lián)考數(shù)學九年級第一學期期末質量跟蹤監(jiān)視試題含解析_第1頁
2023屆浙江省湖州市吳興區(qū)十校聯(lián)考數(shù)學九年級第一學期期末質量跟蹤監(jiān)視試題含解析_第2頁
2023屆浙江省湖州市吳興區(qū)十校聯(lián)考數(shù)學九年級第一學期期末質量跟蹤監(jiān)視試題含解析_第3頁
2023屆浙江省湖州市吳興區(qū)十校聯(lián)考數(shù)學九年級第一學期期末質量跟蹤監(jiān)視試題含解析_第4頁
2023屆浙江省湖州市吳興區(qū)十校聯(lián)考數(shù)學九年級第一學期期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.判斷一元二次方程是否有實數(shù)解,計算的值是()A. B. C. D.2.如果零上2℃記作+2℃,那么零下3℃記作()A.-3℃ B.-2℃ C.+3℃ D.+2℃3.在下列圖形中,是中心對稱圖形的是()A. B.C. D.4.方程的解是()A. B. C., D.,5.為落實國務院房地產(chǎn)調(diào)控政策,使“居者有其屋”,某市加快了廉租房建設力度年市政府共投資億元人民幣建設廉租房萬平方米,預計到年底三年共累計投資億元人民幣建設廉租房,若在這兩年內(nèi)每年投資的增長率都為,可列方程()A. B.C. D.6.拋物線y=x2+kx﹣1與x軸交點的個數(shù)為()A.0個 B.1個 C.2個 D.以上都不對7.如圖,已知梯形ABCO的底邊AO在軸上,BC∥AO,AB⊥AO,過點C的雙曲線交OB于D,且OD:DB=1:2,若△OBC的面積等于3,則k的值()A.等于2 B.等于 C.等于 D.無法確定8.如圖,A、B、C是小正方形的頂點,且每個小正方形的邊長為1,則tan∠BAC的值為()A. B.1 C. D.9.如圖,某同學用圓規(guī)畫一個半徑為的圓,測得此時,為了畫一個半徑更大的同心圓,固定端不動,將端向左移至處,此時測得,則的長為()A. B. C. D.10.用一個平面去截一個圓錐,截面的形狀不可能是()A.圓 B.矩形 C.橢圓 D.三角形二、填空題(每小題3分,共24分)11.若、為關于x的方程(m≠0)的兩個實數(shù)根,則的值為________.12.如圖,tan∠1=____________.13.已知二次函數(shù)的頂點為,且經(jīng)過,將該拋物線沿軸向右平移,當它再次經(jīng)過點時,所得拋物線的表達式為______.14.的半徑是,弦,點為上的一點(不與點、重合),則的度數(shù)為______________.15.若△ABC∽△A′B′C′,相似比為1:3,則△ABC與△A′B′C′的面積之比為_____.16.一個圓錐的母線長為5cm,底面圓半徑為3cm,則這個圓錐的側面積是____cm2.(結果保留π).17.將拋物線y=x2+x向下平移2個單位,所得拋物線的表達式是.18.如圖,AE、BE是△ABC的兩個內(nèi)角的平分線,過點A作AD⊥AE.交BE的延長線于點D.若AD=AB,BE:ED=1:2,則cos∠ABC=_____.三、解答題(共66分)19.(10分)如圖1,四邊形ABCD中,,,點P為DC上一點,且,分別過點A和點C作直線BP的垂線,垂足為點E和點F.證明:∽;若,求的值;如圖2,若,設的平分線AG交直線BP于當,時,求線段AG的長.20.(6分)如圖,在矩形中對角線、相交于點,延長到點,使得四邊形是一個平行四邊形,平行四邊形對角線交、分別為點和點.(1)證明:;(2)若,,則線段的長度.21.(6分)某種商品每天的銷售利潤y(元)與銷售單價x(元)之間滿足關系:y=ax2+bx-1.其圖象如圖所示.⑴a=;b=;⑵銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?⑶由圖象可知,銷售單價x在時,該種商品每天的銷售利潤不低于16元?22.(8分)如圖,在平行四邊形ABCD中,CE是∠DCB的角平分線,且交AB于點E,DB與CE相交于點O,(1)求證:△EBC是等腰三角形;(2)已知:AB=7,BC=5,求的值.23.(8分)利用一面墻(墻的長度為20m),另三邊用長58m的籬笆圍成一個面積為200m2的矩形場地.求矩形場地的各邊長?24.(8分)對于平面直角坐標系中的兩個圖形K1和K2,給出如下定義:點G為圖形K1上任意一點,點H為K2圖形上任意一點,如果G,H兩點間的距離有最小值,則稱這個最小值為圖形K1和K2的“近距離”。如圖1,已知△ABC,A(-1,-8),B(9,2),C(-1,2),邊長為的正方形PQMN,對角線NQ平行于x軸或落在x軸上.(1)填空:①原點O與線段BC的“近距離”為;②如圖1,正方形PQMN在△ABC內(nèi),中心O’坐標為(m,0),若正方形PQMN與△ABC的邊界的“近距離”為1,則m的取值范圍為;(2)已知拋物線C:,且-1≤x≤9,若拋物線C與△ABC的“近距離”為1,求a的值;(3)如圖2,已知點D為線段AB上一點,且D(5,-2),將△ABC繞點A順時針旋轉α(0o<α≤180o),將旋轉中的△ABC記為△AB’C’,連接DB’,點E為DB’的中點,當正方形PQMN中心O’坐標為(5,-6),直接寫出在整個旋轉過程中點E運動形成的圖形與正方形PQMN的“近距離”.25.(10分)某商店經(jīng)營兒童益智玩具,已知成批購進時的單價是20元.調(diào)查發(fā)現(xiàn):銷售單價是30元時,月銷售量是230件,而銷售單價每上漲1元,月銷售量就減少10件,但每件玩具售價不能高于40元.設每件玩具的銷售單價上漲了x元時(x為正整數(shù)),月銷售利潤為y元.(1)求y與x的函數(shù)關系式并直接寫出自變量x的取值范圍.(2)每件玩具的售價定為多少元時,月銷售利潤恰為2520元?(3)每件玩具的售價定為多少元時可使月銷售利潤最大?最大的月利潤是多少?26.(10分)解方程:x2﹣4x﹣21=1.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】首先將一元二次方程化為一般式,然后直接計算判別式即可.【詳解】一元二次方程可化為:∴故答案為B.【點睛】此題主要考查一元二次方程的根的判別式的求解,熟練掌握,即可解題.2、A【分析】一對具有相反意義的量中,先規(guī)定其中一個為正,則另一個就用負表示.【詳解】∵“正”和“負”相對,∴如果零上2℃記作+2℃,那么零下3℃記作-3℃.故選A.3、C【分析】把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.據(jù)此判斷即可.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;B、不是中心對稱圖形,故此選項錯誤;C、是中心對稱圖形,故此選項正確;D、不是中心對稱圖形,故此選項錯誤;故選:C.【點睛】本題考查的是中心對稱圖形的概念:中心對稱圖形關鍵是尋找對稱中心,旋轉180度后與原圖重合.4、C【分析】先把從方程的右邊移到左邊,并把兩邊都除以4化簡,然后用因式分解法求解即可.【詳解】∵,∴,∴,∴,∴,.故選C.【點睛】本題考查了一元二次方程的解法,常用的方法有直接開平方法、配方法、因式分解法、求根公式法,靈活選擇合適的方法是解答本題的關鍵.5、B【分析】根據(jù)1013年市政府共投資1億元人民幣建設了廉租房,預計1015年底三年共累計投資億元人民幣建設廉租房,由每年投資的年平均增長率為x可得出1014年、1015年的投資額,由三年共投資9.5億元即可列出方程.【詳解】解:這兩年內(nèi)每年投資的增長率都為,則1014年投資為1(1+x)億元,1015年投資為1(1+x)1億元,由題意則有,故選B.【點睛】本題考查了一元二次方程的應用——增長率問題,正確理解題意是解題的關鍵.若原來的數(shù)量為a,平均每次增長或降低的百分率為x,經(jīng)過第一次調(diào)整,就調(diào)整到a×(1±x),再經(jīng)過第二次調(diào)整就是a×(1±x)(1±x)=a(1±x)1.增長用“+”,下降用“-”.6、C【分析】設y=0,得到一元二次方程,根據(jù)根的判別式判斷有幾個解就有與x軸有幾個交點.【詳解】解:∵拋物線y=x2+kx﹣1,∴當y=0時,則0=x2+kx﹣1,∴△=b2﹣4ac=k2+4>0,∴方程有2個不相等的實數(shù)根,∴拋物線y=x2+kx﹣與x軸交點的個數(shù)為2個,故選C.7、B【解析】如圖分別過D作DE⊥Y軸于E,過C作CF⊥Y軸于F,則△ODE∽△OBF,∵OD:DB=1:2∴相似比=1:3∴面積比=OD:DB=1:9即又∴∴解得K=故選B8、B【分析】連接BC,由網(wǎng)格求出AB,BC,AC的長,利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【詳解】如圖,連接BC,由網(wǎng)格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【點睛】本題考查了銳角三角函數(shù)的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.9、A【分析】△ABO是等腰直角三角形,利用三角函數(shù)即可求得OA的長,過O'作O'D⊥AB于點D,在直角△AO'D中利用三角函數(shù)求得AD的長,則AB'=2AD,然后根據(jù)BB'=AB'-AB即可求解.【詳解】解:在等腰直角△OAB中,AB=1,則OA=cm,AO'=cm,∠AO'D=×120°=60°,

過O'作O'D⊥AB于點D.

則AD=AO'?sin60°=2×=.

則AB'=2AD=2,

故BB'=AB'-AB=2-1.

故選:A.【點睛】本題考查了三角函數(shù)的基本概念,主要是三角函數(shù)的概念及運算,關鍵把實際問題轉化為數(shù)學問題加以計算.10、B【分析】利用圓錐的形狀特點解答即可.【詳解】解:平行于圓錐的底面的截面是圓,故A可能;截面不可能是矩形,故B符合題意;斜截且與底面不相交的截面是橢圓,故C可能;過圓錐的頂點的截面是三角形,故D可能.故答案為B.【點睛】本題主要考查了截一個幾何體所得的截面的形狀,解答本題的關鍵在于明確截面的形狀既與被截的幾何體有關,還與截面的角度和方向有關.二、填空題(每小題3分,共24分)11、-2【分析】根據(jù)根與系數(shù)的關系,,代入化簡后的式子計算即可.【詳解】∵,,∴,故答案為:【點睛】本題主要考查一元二次方程ax2+bx+c=0的根與系數(shù)關系,熟記:兩根之和是,兩根之積是,是解題的關鍵.12、【分析】由圓周角定理可知∠1=∠2,再根據(jù)銳角三角函數(shù)的定義即可得出結論.【詳解】解:∵∠1與∠2是同弧所對的圓周角,故答案為【點睛】本題考查的是圓周角定理,熟知同弧所對的圓周角相等是解答此題的關鍵.13、或【分析】由二次函數(shù)解析式的頂點式寫出二次函數(shù)坐標為,將點P坐標代入二次函數(shù)解析式,求出a的值,如圖,拋物線向右平移再次經(jīng)過點P,即點P的對稱點點Q與點P重合,向右移動了4個單位,寫出拋物線解析式即可.【詳解】由頂點坐標(0,0)可設二次函數(shù)解析式為,將P(2,2)代入解析式可得a=,所以,如圖,圖像上,點P的對稱點為點Q(-2,2),當點Q與點P重合時,向右移動了4個單位,所以拋物線解析式為或.故答案為或.【點睛】本題主要考查二次函數(shù)頂點式求解析式、二次函數(shù)的圖像和性質以及二次函數(shù)的平移,本題關鍵在于根據(jù)題意確定出向右平移的單位.14、或;【分析】證出△ABO是等邊三角形得出∠AOB=60°.再分兩種情況:點C在優(yōu)弧上,則∠BCA=30°;點C在劣弧上,則∠BCA=(360°?∠AOB)=150°;即可得出結果.【詳解】如圖,連接OA,OB.∵AO=BO=2,AB=2,∴△ABO是等邊三角形,∴∠AOB=60°.若點C在優(yōu)弧上,則∠BCA=30°;若點C在劣弧上,則∠BCA=(360°?∠AOB)=150°;綜上所述:∠BCA的度數(shù)為30°或150°.故答案為30°或150°.【點睛】此題考查了垂徑定理、等邊三角形的判定與性質、三角函數(shù)、弧長公式.熟練掌握垂徑定理,證明△OAB是等邊三角形是解決問題的關鍵.15、1:1.【解析】試題分析:∵△ABC∽△A′B′C′,相似比為1:3,∴△ABC與△A′B′C′的面積之比為1:1.考點:相似三角形的性質.16、15π【分析】圓錐的側面積=π×底面半徑×母線長,把相應數(shù)值代入即可求解.【詳解】解:圓錐的側面積=π×3×5=15πcm2故答案為:15π.【點睛】本題考查圓錐側面積公式的運用,掌握公式是關鍵.17、y=x1+x﹣1.【解析】根據(jù)平移變化的規(guī)律,左右平移只改變點的橫坐標,左減右加.上下平移只改變點的縱坐標,下減上加.因此,將拋物線y=x1+x向下平移1個單位,所得拋物線的表達式是y=x1+x﹣1.18、【分析】取DE的中點F,連接AF,根據(jù)直角三角形斜邊中點的性質得出AF=EF,然后證得△BAF≌△DAE,得出AE=AF,從而證得△AEF是等邊三角形,進一步證得∠ABC=60°,即可求得結論.【詳解】取DE的中點F,連接AF,∴EF=DF,∵BE:ED=1:2,∴BE=EF=DF,∴BF=DE,∵AB=AD,∴∠ABD=∠D,∵AD⊥AE,EF=DF,∴AF=EF,在△BAF和△DAE中∴△BAF≌△DAE(SAS),∴AE=AF,∴△AEF是等邊三角形,∴∠AED=60°,∴∠D=30°,∵∠ABC=2∠ABD,∠ABD=∠D,∴∠ABC=60°,∴cos∠ABC=cos60°=,故答案為:.【點睛】本題考查了全等三角形的判定和性質,等邊三角形的判定和性質,正確的作出輔助線是解題的關鍵.三、解答題(共66分)19、(1)證明見解析;(2);(3).【分析】由余角的性質可得,即可證∽;由相似三角形的性質可得,由等腰三角形的性質可得,即可求的值;由題意可證∽,可得,可求,由等腰三角形的性質可得AE平分,可證,可得是等腰直角三角形,即可求AG的長.【詳解】證明:,又,又,∽∽,又,,如圖,延長AD與BG的延長線交于H點,∽∴,由可知≌,,代入上式可得,∽,,,∴,,平分又平分,,是等腰直角三角形.∴.【點睛】本題考查的知識點是全等三角形的判定和性質,相似三角形的判定和性質,解題關鍵是添加恰當輔助線構造相似三角形.20、(1)證明見解析;(2).【分析】(1)首先利用矩形和平行四邊形平行的性質得出和,然后利用相似三角形對應邊成比例,即可得證;(2)利用平行四邊形對角線的性質以及勾股定理和相似三角形的性質進行等量轉換,即可得解.【詳解】(1)證明:∵是矩形,且,∴.∴.又∵是平行四邊形,且AC∥DE∴,∴.∴.∴.(2)∵四邊形為平行四邊形,,相交點,∴∴在直角三角形中,∴又∵,∴.∴∴.【點睛】此題主要考查相似三角形的判定與性質以及勾股定理的運用,熟練掌握,即可解題.21、(1)-1,20;(2)當x=10時,該商品的銷售利潤最大,最大利潤是25元;(3)7≤x≤13【分析】(1)利用待定系數(shù)法求二次函數(shù)解析式得出即可;

(2)利用配方法求出二次函數(shù)最值即可;

(3)根據(jù)題意令y=16,解方程可得x的值,結合圖象可知x的范圍.【詳解】解:(1)y=ax2+bx-1圖象過點(5,0)、(7,16),

∴解得:故答案為-1,20⑵∵∴當x=10時,該商品的銷售利潤最大,最大利潤是25元.⑶根據(jù)題意,當y=16時,得:-x2+20x-1=16,

解得:x1=7,x2=13,

即銷售單價7≤x≤13時,該種商品每天的銷售利潤不低于16元.【點睛】此題主要考查了二次函數(shù)的應用以及待定系數(shù)法求二次函數(shù)解析式等知識,正確利用二次函數(shù)圖象是解題關鍵.22、(1)證明見解析(1)【解析】試題分析:(1)欲證明△EBC是等腰三角形,只需推知BC=BE即可,可以由∠1=∠3得到:BC=BE;(1)通過相似三角形△COD∽△EOB的對應邊成比例得到,然后利用分式的性質可以求得.解:(1)∵四邊形ABCD是平行四邊形,∴CD∥AB,∴∠1=∠1.∵CE平分∠BCD,∴∠1=∠3,∴∠1=∠3,∴BC=BE,∴△EBC是等腰三角形;(1)∵∠1=∠1,∠4=∠5,∴△COD∽△EOB,∴=.∵平行四邊形ABCD,∴CD=AB=2.∵BE=BC=5,∴==,∴=.點睛:本題考查了平行四邊形的性質,相似三角形的判定與性質以及等腰三角形的判定.在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形;在運用三角形相似的性質時主要利用相似比計算相應線段的長.23、矩形長為25m,寬為8m【分析】設垂直于墻的一邊為x米,則鄰邊長為(58-2x),利用矩形的面積公式列出方程并解答.【詳解】解:設垂直于墻的一邊為x米,得:x(58﹣2x)=200解得:x1=25,x2=4,當x=4時,58﹣8=50,∵墻的長度為20m,∴x=4不符合題意,當x=25時,58﹣2x=8,∴矩形的長為25m,寬為8m,答:矩形長為25m,寬為8m.【點睛】本題考查了一元二次方程的應用,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程,再求解.24、(1)①2;②;(2)或;(3)點E運動形成的圖形與正方形PQMN的“近距離”為.【分析】(1)①由垂線段最短,即可得到答案;②根據(jù)題意,找出正方形PQMN與△ABC的邊界的“近距離”為1,的臨界點,然后分別求出m的最小值和最大值,即可得到m的取值范圍;(2)根據(jù)題意,拋物線與△ABC的“近距離”為1時,可分為兩種情況:當點C到拋物線的距離為1,即CD=1;當拋物線與線段AB的距離為1時,即GH=1;分別求出a的值,即可得到答案;(3)根據(jù)題意,取AB的中點F,連接EF,求出EF的長度,然后根據(jù)題意,求出點F,點Q的坐標,求出FQ的長度,即可得到EQ的長度,即可得到答案.【詳解】解:(1)①∵B(9,2),C(,2),∴點B、C的縱坐標相同,∴線段BC∥x軸,∴原點O到線段BC的最短距離為2;即原點O與線段BC的“近距離”為2;故答案為:2;②∵A(-1,-8),B(9,2),C(-1,2),∴線段BC∥x軸,線段AC∥y軸,∴AC=BC=10,△ABC是等腰直角三角形,當點N與點O重合時,點N與線段AC的最短距離為1,則正方形PQMN與△ABC的邊界的“近距離”為1,此時m為最小值,∵正方形的邊長為,由勾股定理,得:,∴,(舍去);當點Q到線段AB的距離為1時,此時m為最大值,如圖:∵QN=1,△QMN是等腰直角三角形,∴QM=,∵BD=9,△BDE是等腰直角三角形,∴DE=9,∵△OEM是等腰直角三角形,∴OE=OM=7,∴m的最大值為:,∴m的取值范圍為:;故答案為:;(2)拋物線C:,且,若拋物線C與△ABC的“近距離”為1,由題可知,點C與拋物線的距離為1時,如圖:∵點C的坐標為(,2),∴但D的坐標為(,3),把點D代入中,有,解得:;當線段AB與拋物線的距離為1時,近距離為1,如圖:即GH=1,點H在拋物線上,過點H作AB的平行線,線段AB與y軸相交于點F,作FE⊥EH,垂足為E,∴EF=GH=1,∵∠FDE=∠A=45°,∴,∵點A(-1,-8),B(9,2),設直線AB為,∴,解得:,∴直線AB的解析式為:,∴直線EH的解析式為:;∴聯(lián)合與,得,整理得:,∵直線EH與拋物線有一個交點,∴,解得:;綜合上述,a的值為:或;(3)由題意,取AB的中點F,連接EF,如圖:∵點A(-1,-8),B(9,2),∴,在中,F(xiàn)是AD的中點,點E是的中點,∴,∵點D的坐標為(5,-2),A(-1,-8),∴點F的坐標為(2,),∵在正方形PNMQ中,中心點的坐標為(5,),∴點Q的坐標為(6,),∴,∴;∴點E運動形成的圖形與正方形PQMN的“近距離”為.【點睛】本題考查了圖形的運動問題和最短路徑問題,考查了二次函數(shù)的性質,正方形的性質,等腰直角三角形的性質,一次函數(shù)的平移,勾股定理,旋轉的性質,根的判別式等知識,解題的關鍵是熟練掌握所學的知識,正確作出輔助線,作出臨界點的圖形,從而進行分析.注意運用數(shù)形結合的思想

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論