數下-工數復習第六章多元函數微分學_第1頁
數下-工數復習第六章多元函數微分學_第2頁
數下-工數復習第六章多元函數微分學_第3頁
數下-工數復習第六章多元函數微分學_第4頁
數下-工數復習第六章多元函數微分學_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第六章元函數微分f(Pf(x,y)

P0(x0y0D的聚點.Ao正數,總存在正數P(x,y)∈DU(P0,(x(xx)2(yy00

|f(P)–A|=|f(x,y)–A|<成立,那么就稱常數Af(x,y)當(x,y)(x0,y0

(x,y)(x0,y0

f(xyAf(x,y)→A((x,y)(x0,y0

f(P)

或f(P)→A(PP0(x,y)(x0,y0

f(x,y)

(x0,y0)

zf(xy)Df(xy)Df(xy)D上的連續(xù)函數f(xy)P0(x0,y0P0(x0,y0f(xy)的間斷點

p

f(P)f(P0)概念z

f(x,y),z

f(xx,y)f(x, 說 1對x求導視y為常數,幾何意義也說明了這個問z=f(xy)M0x0,y0)的偏導數有下述幾何意義fx(x0y0zf(xyyy0的交線在點M0處的切線M0x軸的斜率.fy(x0y0z

f(x,y)與平面x=x0的交線M0M0Tyy軸的斜率2(x0,y0

時y0可先代入(因此可能簡化函數)x求偏導數存可微 ,偏導數連續(xù)可微

fff=f連

z=f(xy)D內具有偏導數z

f(x,y),z

fy(xyz=f(xy)的二階偏導數。按照對變量求導次序的不同有下列四個二階偏z2z

z 2z

fxx(x,y),yxxy

fxy(x, z

z 2zxyyx

fyx(x,y),yyy2

fyy(x, zf(x,y),uu(x,y),vv(x,zfuf

zfuf u

v

u

vd(uv)du

d(uv)udv

duvduv F(x,y,z)

zz(xyzFxz

x y

(x,y,)z

xx0

yy0z

法平面方xt(xx0ytyy0zt(zz0xy y

z

zxx0yy0z 法平面方xx0yyy0z(zz0F(x,z,y)0FxFyyxFzzx0 3)

(1,yx,zxG(x,y,z) GxGyyxGzzx00 切平面Fx|p(xx0Fy|pyy0Fz|p(zz0 xx0

yy0z000000

z

f(x,y)F

f(x,y)zn(fx,f切平面fx(xx0fyyy0zz0xx0yy0z f 1xx(u,*yy(uv)(參數方程形式zz(u,,,ijk切線v1

(y,z)(z,x)(x,y)nv1v2

(u,v),(u,v),(u,v)

uu(x,y, l

xcos

ycos

z

gradul(l方向投影

uuux,y,z

graduux,y,z

ijkdivijk

rotAAzz

f(x,求駐點

駐點2

2z

2z PAx2BxyCy2A0A0

AC0minu3

f(x,y,

Lf(xyz(xyz

(x,y,z)(一)1zf(xyfx(x0y0)0fy(x0y0)0f(xy(x0y0dzx0y0)0f(xy0xx0f(x0yyy0 (C)②④ 2f(xy在點(0,0)

[f(x,y)f(0,0)](x,

f(x,0f(0,0)0,且

f(0,y)f(0,0) y limfx(x,0fx(0,0)0,且limfy(0yfy(0,0

(x,

f(x,y)f(0,0)

yx2x23證明極限y

x3x6x

2證當(xyykx3趨于(0,0)x3 x3 xxy

6

2x0x0

6

26 x01x01xk去不同值而取不同值。故極限x2x2

x3x6x

24z

(x2y2f(x,y)

x2y20, x2y20,(1)討論f(x,y)的連續(xù) (2)求fx(x,y),fy(x,(3)討論fx(x,y),fy(x,y)的連續(xù) (4)求df(x,解:(1)當(xy)0時,顯然連續(xù),x2limf(x,y)lim(x2x2

0

fy

yf(xy在(0,0)(2)當(xy)(0,0x2x21fx(xx2x21

xf(0,0xx

x2f(xx2x

xx2x21同理fy(x,x2x21

,fy(0,0)x2當(xy)(0,0fx(x,yfy(xy顯然連續(xù),當(xyx2x2x2xlimf(x,y)x2x2x

f(xyy

y x2x(0,0)fy(xx2x當(xy)(0,0df(x,y)fx(x,y)dxfy(x,x2x2x2x2=x2x2當(xy)(0,0

x2x2

dxx2x2x2x2x2x2由于limf(xyf(0,0)fx(0,0)xx2x2

sin 0x0y

x2所以df(0,0fx(0,0)dxfyx2

x0yf(xy在點(0,0)fx(0,0)2fy(0,0)1(A)df(0,0)2dx(B)f(xy在(0,0)zf(x, 在(0,0)點處切線的方向向量為jx(D)x0y

f(x,y)必存 (選考慮二元函數

f(xy)的下面4個性質①f(xy)在(x0y0)連續(xù)②f(xy)(x0y0)兩個偏導數連續(xù);f(xy在(x0y0)f(xy在(x0y0)(A)(B) (選f(xy)|xy|(xy,其中(x,y在點(0,0)(x,y)在什么條件下,fx(x,y),fy(x,y)存在 ((x,y)0(x,y)在什么條件下,f(x,y)在(0,0)可微 ((x,y)0 1zf(xy,xx2y(xy2z

t)dtf和

x2

y

tu,則x2y

y

t)dtxy2(u)(du)x2yz

f1yf2

y)(xy2)y2(x2y)2xy2z

f1y(f11xf12x)x2f2fx2(f21xf22x)2y(xy2xy3(xy2)2x(x2y)2x3y(x2

y19x2y20有形如ux 解設ry,則u(rxu

r

y

2uy2

2y (r)

u r1

2u

1 (r)

x

y22y1

y2

2yx2x既 x2x 亦 (1r2)2r

(r)c1arctanr 故 u(x)c1arctanx

(c1,c2為任意常數3zf(x2y22z 2z 1 x2y2xxz

yzx2解:設zf(r),x2 2

rx dz dz

z

z

dz dr2z

dr

d

r r 同理可求y2dr2z

,解得zc1cosrc2sinrrx2zx2

x2y2x2x2

x2z

f(t,et

,其中 具有一階連續(xù)偏導數,

2z。2 (2xf2x3y(fexyf 已知函數uu(xyx2y2xy0,試確定參數a,b變換u(x,y)V(x,y)eaxby下不出現一階偏導數項 (a1,b1設函數z

f(xy在點(1,1

3(x)

f(x,f(xxd

x

1yy(x)zz(xzxf(xyF(xyz)0所確定的函數,fFdzdy 解:zxf(xyF(xyz)0x

dz(

xf)Fyxfdx

fx(1 )

Fyxf

(Fxf

F(fxf FF F z

Fyxf2設函數u定,求du

f(xyzzz(xyxexyeyzez解:duudxudyx求導, u

fz,exxexzezzez ex

z

ex

u

ey所以xezzezx

fxfzezzez

fyfzez exxex eyyey所以dufxfzezzezdxfyfzezzez 3xyzlnyexz1,根據隱函敵存在定理,存在點(0,l,1)的一個鄰zz(xyy(xzzz(xxxyzzz(xxxyzyy(x4zz(xy

0:c,f(xyf22

f

2

f22

2xyxy(x

y2d2證明:f(x, c為一直線,當且僅當

0f(xyx求導ffdy0dyfxx y

f dy( xy

dx

f

d2 dy d2 fxx2fxydxfyy(dx)fydx2

d2必要性:若(x,

0,由(1)

2

dyxy

(dy)2yy

2

2

2

(f

20

f

(f

f22

f

2

f22

2xyxy(x

y2

d2

2

dyxyd2

(dy)2yy比較(1)式,fy

0fy0

0,即(xy)c5z(xyF(xzyz0xzyzz xF(11zF(z1z0x2y y xyzFx2

xzFy2xzx xF1xzyzz

,由對稱性得yzy xF1

x x二練習1.設函數z

f(u)u(uyp(t)dtuxyf(u),(up(u),(u連續(xù),且(u)1pyzp(xz 例1求函數uxyezxtyt22ztt3M(1,1,0

t1,曲線在點MM M 其方向余弦為cos

,cos

cos3

coscos 11121 33

12xtyt2zt3x2y3z0垂直的切線方程,ux2y2z2z 解:設切點參數為t0,則s1,2t0,3t0n1,2,3,即00,所以t0切點(1,1,1s1,2,3)x1y1z

123s0 123

cos cos 0 0

3x2y2z23上與(1,1,1點處的切平面平行的切平面方程,ux22y23z2在點(1,1,1x2y2z2300n2(Fx,Fy,Fz)(x,y,z)(2x0,2y0,2z0)//(x0,y0,z000n1n2x0y0z0x0y0z0切平面方程

(x1)(y1)(z1)n0

1,1,

333 3333uucosucosu 3

0 0

xyb Lxayz30在平面上,而平面z(1,2,5),求a,b之值

yx22.函數zx2 (D)可 (選2x22y2z212上求一點,f(xyz)x2y2z2

12

1,021f(xy在點(0,0)y

f(x,y)f(x2y2 1(A)點(0,0)f(xy極值點(B)點(0,0)f(xy(C)點(0,0)是f(x,y)極小值點(D)由條件不能確定(0,0)是否為極值 (選21f(0,0xy時,選例3f(xy預(x,y均為可微函數,且(xy)0,已知(x0y0)f(xy在約束條件(x,y)0下的一個極值點,下列選項正確的是(A)fx(x0y0)0fy(x0y0)(C)fx(x0y0)0fy(x0y0)

(B)fx(x0y0)0fy(x0y0(D)fx(x0y0)0fy(x0y0)例4zf(0,00

f(xy的全增量z2x3)x2y4)y

(1)z的極值;(2)zx2y225(3)zx2y225z2x3z2y4zx23xyzy)2y 所以yy24yc

zx23xy24y

,由f(0,0

,得c0zx23xy24z2x3 x

2z

2z

2z (1)由 A

2,B

0,C zy2y4

y1

ACB240A20z3,26.252(2)L(x,y,)x2y23x4y(x2y2Lx2x32x x3 x3y2y2Ly2y42y0得y2y2x2y225

4,z(3,4)

,及

,z(3,4)例5F(x,yz處處有連續(xù)的偏導數,并且三個偏導數在任何一點不同時等于SF(xyz0不含原點,M(x0y0z0是曲面上距原點最近的點。求證該M(x0,y0,z0)的法線經過原點。證明只須證明曲面在點M(x0,y0,z0)處的法向量平行于OM(x0,y0,z0) 極值問題minf(x,y,z)x2y2F(x,y,z)f(xyzS上任一點(xyz構造輔助函數L(xyz)f(xyzF(xy

按照題意f(xyz)在點M(x0y0z0x0y0z0(x0,y0(x0,y0,z(x0,y0,z0

2

(x0,y0,z0(x0,y0,z0(x0,y0,z0FFF于是向量(x0y0z0與x,y,z

(x,y,z00另一方面,曲面SF(xyz)

在點M(x0y0z0

處的法向量為FFFx,y,z

SM(x0y0z0M(x0y0z0 (x,y,z00與向量OMx0y0z01.設zz(x,y)是由x26xy10y22yzz2180確定的函數,求z(x,y)的極值 (極小值z(9,3)3,極大值z(9,3)3)2.zf(xy的全微分dz2xdx2ydyf(1,12f(xy D(xy|

(f(0,2f(0,22f(1,0f(1,03xoyDxy|x2y2xy75},小山的高度函數為h(xy75x2y2M(x0y0D上一點,問h(xyg(x0,y0g(x0,y0Dx2y2xy75上找出使(1)g(xy達到(y2x)2(x2y 00 (y2x)i(y2x)2(x2y 00 (x0,y0 x2y22z24.已知曲線Cxy3z

,求Cxoy第七章元數量值函數積分多元數量值函數積分的概念與性nnf(M)d=I=d

f(Mi)ii1f(M)在幾何形體f(M)在f(M)在有界閉幾何形體f(M)在上必可積。11dd.2[f(M)g(M)]d

f(M)d

g(M)d 3f(M)df(M)df(M)d

f(M)g(MMmf(M)在閉幾何形體f(M)在閉幾何形體上連續(xù),則在上至少存在一點M0 f(M)df 二重積 f(x,y)d=limf(,)0iD三重積分f(xyz)dv

f(i,i,i)

0i對弧長的曲線積分

f(x,y)ds= f( 0 f(x,y,z)ds f(,,0nf(x,y,z)dS=limf(i,i,i)Sin

累次積分積之。說明:1(D)12選擇積分次序要合適,若先yxI1

xsinydx322

ex2,cosx2,sinx2sinxx

21計算2

y2 2y

2y y

12

y

dy0

dy0xdx30y 12y2dey21y2ey22

y 26 6

14e4ey221(15e46 0 2計算二重積分dxsinxdy4dx2sinx 2 2 y 2 2 I1

sin2ydx

2)dy

y

dy (2 1xb例3計算

(a,b0

xyyxyy0

b=dxxydydyxydx

dy

ay

a4

xxxD

dxdyDx2y21xy1Dx r(cossin

2dxdy2d

Dx

42(cossin1)d 例5 (|x|D:|x||解:原式4|x|dxdy41dx1xxdyD D16求(xy)dxdyD是圓心(a,bRD(xy)dxdy((xaybab))dxdya 7計算xydxdyD是雙紐線(x2y222xyD解:雙紐線(x2y222xy的極坐標方程為r2sin原式22d

sin

rcosrsinrdr 例8 D:x2y2

1 1 解 xdxdyD:x2y2

ydxdyD:x2y2

(x2D:x2y22

)dxdy2

d0rdr9f(x在0x1f(x)01xf21 1

1f21010f1 證明:只須證明0f(x)dx0xf(x)dx0xf(x)dx0f=1f2(x)dx1yf(y)dy1xf2(x)dx1f(y)dxf2(x)f(y)(y D=f2(y)f(x)(xy)dxdy1f(x)f(y)(yx)(f(x)f(y))d 210求|x2y21|dxdyDx2y29D解Dx2y21D:1x2y2 原式(1x2y2dxdy(x2y21)dxdy 11求emax{x2y200y0x1y解:emax{x2y2}dex2dey2d0x1y

ex

ey

dxe100y

12計算二重積分[xy]dxdyDxy|0x2,0yD解:xyjj1,2,3,4DDk(k1,2,3,4,則[xy]k1k1,2,3,4,因而[xy]dxdy0dxdydxdy2dxdy3dxdy32331

f(x連續(xù),f(0)1F(t)

f(x2y2x2y2t

t0)F000解F(t2dtf(r2rdr2tf(r2rdrF(t2f(t2000F(0)limF(t)F(0)lim2f(t2)2f(0)

t

t2y計算二重積分ydxdyDx2,y0,y22yD (4 2計箅二重積分|yx2|dxdy,其中D{(x,y)||x|1,0y (11 設D={(x,y)|x2y2 2,x0,y0},[1x2y2]表示不超過1x2y2的最大數,計箅二重積分xy[1x2y2]dxdy (3 f(x在[a,bf(x)0,證明bf(x)dxb1dxb aff(x在(0,f(t)e4t2

x2y24t

f

dxdyx2x2f(t

f(t)e4t2(4t2 y2( z2(x,y 投影

f(x,y,z)dvadxy(x)dyz(x,y)

f(x,y,z)dvc2dzf(x,y,z z柱面坐 f(x,y,z)dxdydz=f(cos,sin,z)dd 球面坐標f(xyz)dxdydzf(rsincosrsinsinrcos)r2sin 一般方法f(xyz)dxdydzF(uvw|J|

V其 F(u,v,w)

Vf(x(uvwy(uvwz(uvw

y21求(x2y2z)dV:由曲線

x

z解:x2y22z4 2 43I (x2y2z)dxdydzd (r2z)rdr 3 Dz:xy2448 dx2y2(x2y2z)dzd rdrr2(r448

z)dz

2563 Dxy:x2y2 R2x2例2計算三重積分(3x25y27z2)dV,R2x21解設x2y2z2R2,則由3x25y27z2z1(3x25y27z2)dV1(3x25y27z21 21由輪換對稱性x2dVy2dV 故原式1(3x25y27z2215(x2y2z22152dsindRr2r2dr2 0P0距離平方成正比(比例常數k>0),求球體質心位置。0解:設球體為Ω,球心為原點,P(0,0Rx2y2z2R2(xyz

xy zk(x2y2(zR)2 2Rz k(x2y2(zR)2

(x2y2z2RzR22R(x22z2

8

R2dsindRr2r2drR2

4求f(xyz)dV,其中x2y2z2(xyz)2f(x,y,z)

當zx23x2x23x23解:原式(x2y2z22xy2yz2xz)dV

4cos

4cos

3sin

r4dr

d2sin3

r3cosdr 例5設函數f(x)連續(xù)且于零f(x2y2z2F(t):x2y2z2t

f(x2y2t,G(t)D:x2y2ttf(x2y2D:x2y2tF(t在區(qū)間(0,2證明當t0F(t)G(t2

f(x2 2dsindtf(r2 2f(r 000(1) 0002dtf(r2 tf(r2tf(tt2F(t)t2

)0f

)r(t0F(t在(0, 0f

)rdrt 20ft

2

tf t2 t2

t2(2)t0F(t)G(tt2

0f

0f

只需證

(t)

tf(rt

)r

tf(rt

f(r

)rdr

0 又(0)0,所以(t)0

(t)

f(t2)0

f(r2)(tr)2dr

:x2y2z2R2

z

及2

1:x2y2z2R211x0y0z01(A)xdV4

ydV4 (C)zdV4 (D)xyzdV4

2.計算f(xyz)dVx2y2za)2a2x2f(x,y,x2

,當zx2,0x2

a41x22x22f幾何解釋:1.

12.第一型曲線積分Lf(xy)dsf(xy0xOyL為zf(x,y)的柱面面積。xy

ds

x2y2

yy(x)dsds1y2(xxr()(dx)2(dy)2rr()(dx)2(dy)2

r2r2x yzy

ds

x2y2z2 z(x

ds

1y2z2dx(此類空間曲線常以隱式方程形式出現xdsdxy

ds x2y2z2 1I(zy)dsc為 xyz解曲線cx2y2z2R2xyz0xyzzdsydsxds1(xyz)ds10ds 3 3y2dsx2dsz2ds1(x2y2z2)ds1R2ds1R22R2 3

3 I(zy2)ds2R3 x2y2z2R2x0y0z0的邊界曲線的質心,

(3

4R

4R

1zz(xy dS

1z2z2 f(x,y,z)dS f(x,y,z(x,y)1z2z2 yy(zx),則 dS

1y2y2 f(x,y,z)dS f(x,y(z,x),z1y2y2 Dyzxxyz dS(一)

1x2x2 f(x,y,z)dS f(x(y,z),y,z1x2x2 1求(x2y2z2xy2x2yz)dS,其中x2y2

(0z1zx222解:由對稱性,得xy2dS1zx222 原式 (2(x2y2) x2y2)2dxdy Dxy:xy3例2設曲面:|x||y||z|1,則(x|y|)ds (4 333S為球面(xa)2yb)2zc)21(xyS解(xyz)dSxaybzc)]dS(ab 由于球面(xa)2yb)2zc)21xaybzc(xa)dS(yb)dS(zc)dS (xyz)dS=(abc)dS4(ab 例4計算曲面積分((2x3x2cos2y3y2cos3(z21cos)dsz1x2y2(z0),coscosco為曲面向余弦(cos0z解:設1x2y21原式

(6x22x6y22y6z)dV2

2

1r =6(x

z)dV3

(rz)dz323(二)1S:x2y2z2a2z0SS1

xdS4 (B)xdS4 (C)zdS4 (D)xyzdS4

x2計算曲面的質量其中為錐面z 在柱體x2y22x2任意一點(x,y,z)處的面密度函數為該點到xoy面的距離 ( 29 (4(abc)R2

I(xyS

S:(xa)2(ya)2(za)24.設半徑為R的球面的球心在定球面x2y2z2a2(a0)上,問R為何值時,球面在定球面內部的面積最大? (R4a)38曲面積向量值函數在有向曲線上的積分第二型曲線積

w|F||l|cosF變力沿曲線運動

dw|F|dsPdxQdy,則WLPdxQdy平面曲線LPdxQdy,空間曲線LPdxQdyRdz,性質LP(x,y)dx+Q(x,y)dy=t1{P[x(t),y(t)]x(t)Q[x(t), P

ydxdyLPdxQdyL的取正向的邊界曲線,D為單連通區(qū)域,P,QDLP(x,y),Q(x,y及DLPdxQdy=0DCLPdxQdy(3)存在u(x,y(3)存在u(x,ydu=P(x,y)dxQ(x,y)dyPdxQdyduu(4)P

D內恒成立 (2)1I[ycosxy]dxy)sinx1]dy,這里yOm OmA是位于連接O(0,0A(,的線段OA下方的任一光滑曲線。且OmA與OA所圍圖2.ABBOB(0,I

(QP Om0(()cosx)dx0(1)dy22 xdy

例2L

x2

L為上半橢圓a2

1(abA(a,0)B(0,b)C(a,0)

y2 (x2y2

x,積分與路徑無關,取l

(上半圓xacos即yasin原式

xdyydx

xdyydx

0(a2cos2ta2sin2t)dtallx2 2 a2all3設(xy),v(xyD:x2y22x2yD D曲線C上u(xy)x,v(xy)yxy)vxyD xy)vxy)u]dxdyuvdxuvdyxydx (yx)dxdy[(y1)(x1)2]dxdy2dxdy 4D為曲線Cr1cosA,C C函數uu(xyDx2y21,證明ndsACn是uDuds(ucosucos)ds(ucosucos)dsudyuC

C

C

C (x2y2)dxdydxdyA20d

rdr 2 2x4例5設f(u)存在連續(xù)的導數,且0f(u)duA0,L為半圓周2x4B(2,0。計算

f(x2y2)(xdxX(xy

f(x2y2)x,Y(x,y)

f(x2y2y,f(x2y2)(xdxydy)

XdxX(xy),Y(xyY2xyf(x2y2) f(x2y2)(xdxydy)=

f(x2y2)(xdx2f(x2)xdx14f(u)du0

2

(xay)dx(x

為某函數的全微分,求常數a。a計算L

xdyydxL:ABCA(1,0x2y21B(1,04x2到Dxy|0x,0y}LDxesinydyyesinxdxxesinydyyesin xesinydyyesinxdx2L計算曲線積分I

xdybxbxaL

(ab0ab)L是以點(1,1)為中心,2222R(R

2為半徑的圓周,取逆時針方向。R

時I0R

時,I

xdyydxA(常數,其中(xL是繞原點(0,0) y

xdyCC為任一不過原點也不包圍原點的正向閉曲線,證明(xy2C當(1)4時,求(x)及A ((x)4x2,A向量值函數在有向曲面上的積 流量Q|v|Scos(nv)vsdQvdsPdydzQdzdxv(P(x,y,z),Q(x,y,z),R(x,y,vdSPdydzQdzdxS SS S R

x

zdvPdydzQdzdxRdxdy R或x

zdv(PcosQcosRcos 這里是的整個邊界曲面的外測coscoscos是在點(x,yz)向余弦

xdydzydzdx

1I

3(x2y2z2

a2

1PQR0

x2y2z22 I

xdydzydzdxzdxdy

3dv 3

3

xdydz

例2

x2y2

,其中

是由曲面x

R及兩平zRzR(R0解:設123依次為xy

xyxy

xyxy

(R)2dxdyx2y21

x2y22 R2

x2y2R

x2y2R2

x2y2R

x2y2 x2y2

R2

dydz

R2

R2RR2R

2dydz

R2y2

RDyzRR

RR 3If(xyzx)dydz2f(xyzy)dzdxf(xyzz)dxdyfxyz1被坐標面所截部分,上側。F(x,yz)xyz1I((f(x,y,z)x)Fx(2f(x,y,z)y)Fy(f(x,y,z) ((f(x,y,z)x)1(2f(x,y,z)y)1(f(x,y,z) (xyz)dxdydxdy 級數的知識框級數的概念與性1u1+u2+u3++un+=un sn=ui稱為部分和,若limsns稱無窮級數un

uns,則kun收斂到ks unvn收斂到s,,則級數(unvn收斂到s

如果級數un(u1un)(un1un)(un1

)

k un收斂,則limun

數項級 小收,小發(fā)大比較法 lim 根植法:limnanl,l1收,l1

f(x)dxf(n) 交錯級數:萊布尼茲判別法,un1un,limun任意項級數

函數項收斂半徑R

(一) n

n 1結論1若an

an(如an

(2

n

1n

n

(3)

a收斂,則

a2收斂(如

(1)n

(4)

a2收斂nn

n

n

nn則n則a3nn (B)24對例2證明若偶函數f(x)x0的某鄰域內有二階導數,且f1

f(0)1,則n n1 f(xf(0

f(x)f(0)f(0)x

f(0)x2o(x2)f11f(0)

o1,

f11

f(0)

o1

f(0)n

n2 n

n2

|u

f11~f(0)

f1即 n n2, n 絕對收斂 n1 3設{un},{cn},滿足cu

0

1發(fā)散,則u n n1n n1u

n n,滿足cnncn1a(常數a0,且 收斂,則un也收un

c

c

n1u

n(1)

n

n n

11

n

n

ccunnn(2)由條件 unn

a0,得

c

cu,所以uc1u1un

n

n

n n

1 nc1收斂,則uc n1

n

n 4設正項數列{an}單調減少且

an發(fā)散,證明

n

n

an{a}單調減少且(1)nalim

a0n有

an a

n1

n 所以un1n1 n1

(anan1,而(anan1

nSna1an1a1ann例5xnnx10nxnaa1時。級數xnfn(1)n

nn(x)xnnx1,x(0,f(x)nxn1n0n

fn(0)10xnnx10

(0,1

0x

1f n1

1xn n

n6設an和bnn1n1bn收斂時,n

n

n

n 也收斂;當anbnn

nan1bn1 a2b2,a3b3,,

b1

a1

an

a

ban

1 有比較法知,當bnan也收斂;當anbnn

n

n

n

7設正項數列{a}單調減少,且(1)na發(fā)散,試問

n

n1an解由于an0{an}limanan

a0n若a0,則由萊布尼茲判別法有(1)na收斂,與假 ,故a0。于nn 1 1 1,從而 a a a

a

,而a

1

(二) a0p0limnpen1a1,若級數a (p2

n

n設annn

n

ununn

n

(u2n

)n

un1

0設an4tann0(1)求n

nan

1(2)證明:對任意的常數0,級數n

1 1

設a12an12an

15.y5.

nyx

且y(0)且

n1

n

y111散性

n1

n nn討論級數p的斂散性nn|a|1時,級數發(fā)散;當a1時,若0p1p1級數收斂;當a1時,若0p1p1時級數絕對收斂) 兩個正項級數anbnnn(n1,2,,討論兩個級數斂散n

n

an

(當an發(fā)散時,bn必發(fā)散;當bn收斂時,an必收斂n

n

n

ny2exsin

(x0)x

e1關于冪級n

R22(RR內ax(且內閉一致收斂nnf(n)(0) f(n)(x f(x)~ x或 0(xx0n n 1)1

1xx2x3(1)nxn

1x12)1

1xx2x3xn1xe

1x22

xnn

(x3sinxx3

x(2n

(x2cosx12

x4

x2n

(x2ln(1x)x22

3

4

n

(1x(1x)m1mxm(m1)x2m(m1)(mn1)xn (1x變換之后使用公式,求導,積分公式可和型和式求導(或積分)于原式結合1求n

(xn

1,即當|x3|12x4x2n

發(fā)散,故收斂域為[2,4n nn2設axnx2處條件收斂,則nn

(x1)2nx0n n(A)(B)(C)(D)斂散性由具體{an}13f(xx23x4x111

1

1x23x

5x

x11 1 1

(x1)n,xx

(x1)

31x13

3n 1 1 1

(x1)n,xx

(x1)

21x12

2n 1 (1)n n0x23x453n1n04(1)求n

2n

(x

,xR1|x|1S(x)nxn1nS(x)dx

x

nxn1dx

xn

,故S(x)

x

,|x|xx

0

1x

n(2)求nn R1x[1,1S(x)x,則S(x

xn1n1

n

1xS(x)S(xS(0)x

,1xS0 n(3)求nn

1 解:在(2)中,令x 2

n

n

S()ln25求n

(1)nn1x2n1(2n解:收斂域(,S(x)n

(1)nn1x2n1(2n 1 20S(x)dx 2n

1從而S(x) (sinxxcos12

x x2nn例8求135(2n1n x2nn解:收斂域(,S(x)135(2n1n

2x41S(x)1xS即

xS(x)e2

xe2xS(0) x(二)n若冪級數ann

R0,則liman11n

n limn1不存在,則冪級數an

n

n 若冪級數axn收斂域為[1,1,則冪級數naxn的收斂域為[1,1nn

n若冪級數n

aax收斂域為[1,1,則冪級數nn

anxn的收斂域為[1,1(D)n1 nf(x)arctan12xx的冪級數,并求級數2n1n (1)n

2n

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論