海南??谑?022年數(shù)學(xué)九年級第一學(xué)期期末達標(biāo)檢測模擬試題含解析_第1頁
海南海口市2022年數(shù)學(xué)九年級第一學(xué)期期末達標(biāo)檢測模擬試題含解析_第2頁
海南??谑?022年數(shù)學(xué)九年級第一學(xué)期期末達標(biāo)檢測模擬試題含解析_第3頁
海南海口市2022年數(shù)學(xué)九年級第一學(xué)期期末達標(biāo)檢測模擬試題含解析_第4頁
海南??谑?022年數(shù)學(xué)九年級第一學(xué)期期末達標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.在同一坐標(biāo)系中一次函數(shù)和二次函數(shù)的圖象可能為()A. B. C. D.2.如圖示,二次函數(shù)的圖像與軸交于坐標(biāo)原點和,若關(guān)于的方程(為實數(shù))在的范圍內(nèi)有解,則的取值范圍是()A. B. C. D.3.如圖,晚上小亮在路燈下散步,在小亮由A處徑直走到B處這一過程中,他在地上的影子()A.逐漸變短 B.先變短后變長C.先變長后變短 D.逐漸變長4.如圖,是的直徑,是的弦,已知,則的度數(shù)為()A. B. C. D.5.不等式組的整數(shù)解有()A.4個 B.3個 C.2個 D.1個6.如圖,在正方形網(wǎng)格中,線段A′B′是線段AB繞某點逆時針旋轉(zhuǎn)角α得到的,點A′與A對應(yīng),則角α的大小為()A.30° B.60° C.90° D.120°7.拋物線y=x2+6x+9與x軸交點的個數(shù)是()A.0 B.1 C.2 D.38.如圖,在菱形ABCD中,于E,,,則菱形ABCD的周長是A.5 B.10 C.8 D.129.一元二次方程x2-2x=0根的判別式的值為()A.4 B.2 C.0 D.-410.如圖,∠1=∠2A.∠C=∠D B.∠B=∠AED11.如圖,平面直角坐標(biāo)系中,,反比例函數(shù)的圖象分別與線段交于點,連接.若點關(guān)于的對稱點恰好在上,則()A. B. C. D.12.在中,是邊上的點,,則的長為()A. B. C. D.二、填空題(每題4分,共24分)13.反比例函數(shù)y=的圖象分布在第一、三象限內(nèi),則k的取值范圍是______.14.若二次函數(shù)y=x2+x+1的圖象,經(jīng)過A(﹣3,y1),B(2,y2),C(,y3),三點y1,y2,y3大小關(guān)系是__(用“<”連接)15.化簡:=______.16.一枚質(zhì)地均勻的骰子,六個面分別標(biāo)有數(shù)字1,2,3,4,5,6,拋擲一次,恰好出現(xiàn)“正面朝上的數(shù)字是5”的概率是___________.17.把兩塊同樣大小的含角的三角板的直角重合并按圖1方式放置,點是兩塊三角板的邊與的交點,將三角板繞點按順時針方向旋轉(zhuǎn)到圖2的位置,若,則點所走過的路程是_________.18.因式分解:_______________________.三、解答題(共78分)19.(8分)(特例感知)(1)如圖①,∠ABC是⊙O的圓周角,BC為直徑,BD平分∠ABC交⊙O于點D,CD=3,BD=4,則點D到直線AB的距離為.(類比遷移)(2)如圖②,∠ABC是⊙O的圓周角,BC為⊙O的弦,BD平分∠ABC交⊙O于點D,過點D作DE⊥BC,垂足為E,探索線段AB、BE、BC之間的數(shù)量關(guān)系,并說明理由.(問題解決)(3)如圖③,四邊形ABCD為⊙O的內(nèi)接四邊形,∠ABC=90°,BD平分∠ABC,BD=7,AB=6,則△ABC的內(nèi)心與外心之間的距離為.20.(8分)如圖,在△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,E是AC中點.(1)求證:DE是⊙O的切線;(2)若AB=10,BC=6,連接CD,OE,交點為F,求OF的長.21.(8分)如圖,直線y=﹣x+b與反比例函數(shù)y=的圖形交于A(a,4)和B(4,1)兩點(1)求b,k的值;(2)若點C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當(dāng)2≤x≤6時,函數(shù)值y的取值范圍;(3)將直線y=﹣x+b向下平移m個單位,當(dāng)直線與雙曲線沒有交點時,求m的取值范圍.22.(10分)某批發(fā)商以每件50元的價格購500件恤,若以單價70元銷售,預(yù)計可售出200件,批發(fā)商的銷售策略是:第一個月為了增加銷售,在單價70元的基礎(chǔ)上降價銷售,經(jīng)過市場調(diào)查,單價每降低1元,可多售出10件,但最低單價高于購進的價格,每一個月結(jié)束后,將剩余的恤一次性虧本清倉銷售,清倉時單價為40元.(1)若設(shè)第一個月單價降低元,當(dāng)月出售恤獲得的利潤為元,清倉剩下恤虧本元,請分別求出、與的函數(shù)關(guān)系式;(2)從增加銷售量的角度看,第一個月批發(fā)商降價多少元時,銷售完這批恤獲得的利潤為1000元?23.(10分)如圖1,已知二次函數(shù)y=mx2+3mx﹣m的圖象與x軸交于A,B兩點(點A在點B的左側(cè)),頂點D和點B關(guān)于過點A的直線l:y=﹣x﹣對稱.(1)求A、B兩點的坐標(biāo)及二次函數(shù)解析式;(2)如圖2,作直線AD,過點B作AD的平行線交直線1于點E,若點P是直線AD上的一動點,點Q是直線AE上的一動點.連接DQ、QP、PE,試求DQ+QP+PE的最小值;若不存在,請說明理由:(3)將二次函數(shù)圖象向右平移個單位,再向上平移3個單位,平移后的二次函數(shù)圖象上存在一點M,其橫坐標(biāo)為3,在y軸上是否存在點F,使得∠MAF=45°?若存在,請求出點F坐標(biāo);若不存在,請說明理由.24.(10分)如圖,內(nèi)接于,,是的弦,與相交于點,平分,過點作,分別交,的延長線于點、,連接.(1)求證:是的切線;(2)求證:.25.(12分)閱讀下面材料,完成(1)﹣(3)題數(shù)學(xué)課上,老師出示了這樣一道題:如圖,四邊形ABCD,AD∥BC,AB=AD,E為對角線AC上一點,∠BEC=∠BAD=2∠DEC,探究AB與BC的數(shù)量關(guān)系.某學(xué)習(xí)小組的同學(xué)經(jīng)過思考,交流了自己的想法:小柏:“通過觀察和度量,發(fā)現(xiàn)∠ACB=∠ABE”;小源:“通過觀察和度量,AE和BE存在一定的數(shù)量關(guān)系”;小亮:“通過構(gòu)造三角形全等,再經(jīng)過進一步推理,就可以得到線段AB與BC的數(shù)量關(guān)系”.……老師:“保留原題條件,如圖2,AC上存在點F,使DF=CF=AE,連接DF并延長交BC于點G,求的值”.(1)求證:∠ACB=∠ABE;(2)探究線段AB與BC的數(shù)量關(guān)系,并證明;(3)若DF=CF=AE,求的值(用含k的代數(shù)式表示).26.如圖,某中學(xué)九年級“智慧之星”數(shù)學(xué)社團的成員利用周末開展課外實踐活動,他們要測量中心公園內(nèi)的人工湖中的兩個小島,間的距離.借助人工湖旁的小山,某同學(xué)從山頂處測得觀看湖中小島的俯角為,觀看湖中小島的俯角為.已知小山的高為180米,求小島,間的距離.

參考答案一、選擇題(每題4分,共48分)1、A【詳解】根據(jù)二次函數(shù)的解析式可得:二次函數(shù)圖像經(jīng)過坐標(biāo)原點,則排除B和C,A選項中一次函數(shù)a>0,b<0,二次函數(shù)a>0,b<0,符合題意.故選A.【點睛】本題考查了(1)、一次函數(shù)的圖像;(2)、二次函數(shù)的圖像2、D【分析】首先將代入二次函數(shù),求出,然后利用根的判別式和求根公式即可判定的取值范圍.【詳解】將代入二次函數(shù),得∴∴方程為∴∵∴故答案為D.【點睛】此題主要考查二次函數(shù)與一元二次方程的綜合應(yīng)用,熟練掌握,即可解題.3、B【分析】小亮由A處徑直路燈下,他得影子由長變短,再從路燈下到B處,他的影子則由短變長.【詳解】晚上小亮在路燈下散步,在小亮由A處徑直走到B處這一過程中,他在地上的影子先變短,再變長.故選B.【點睛】本題考查了中心投影:由同一點(點光源)發(fā)出的光線形成的投影叫做中心投影.如物體在燈光的照射下形成的影子就是中心投影.4、C【分析】根據(jù)圓周角定理即可解決問題.【詳解】∵,∴.故選:C.【點睛】本題考查圓周角定理,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.5、B【分析】先解出不等式組的解集,然后再把所有符合條件的整數(shù)解列舉出來即可.【詳解】解:解得,解得,∴不等式組的解集為:,整數(shù)解有1、2、3共3個,故選:B.【點睛】本題考查了一元一次不等式組的的解法,先分別求出各不等式的解集,注意化系數(shù)為1時,如果兩邊同時除以一個負(fù)數(shù),不等號的方向要改變;再求各個不等式解集的公共部分,必要時,可用數(shù)軸來求公共解集.6、C【詳解】分析:先根據(jù)題意確定旋轉(zhuǎn)中心,然后根據(jù)旋轉(zhuǎn)中心即可確定旋轉(zhuǎn)角的大?。斀猓喝鐖D,連接A′A,BB′,分別A′A,BB′作的中垂線,相交于點O.

顯然,旋轉(zhuǎn)角為90°,故選C.點睛:考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是能夠根據(jù)題意確定旋轉(zhuǎn)中心,難度不大.先找到這個旋轉(zhuǎn)圖形的兩對對應(yīng)點,連接對應(yīng)兩點,然后就會出現(xiàn)兩條線段,分別作這兩條線段的中垂線,兩條中垂線的交點就是旋轉(zhuǎn)中心.7、B【分析】根據(jù)題意,求出b2﹣4ac與0的大小關(guān)系即可判斷.【詳解】∵b2﹣4ac=36﹣4×1×9=0∴二次函數(shù)y=x2+6x+9的圖象與x軸有一個交點.故選:B.【點睛】此題考查的是求二次函數(shù)與x軸的交點個數(shù),掌握二次函數(shù)與x軸的交點個數(shù)和b2﹣4ac的符號關(guān)系是解決此題的關(guān)鍵.8、C【解析】連接AC,根據(jù)線段垂直平分線的性質(zhì)可得AB=AC=2,然后利用周長公式進行計算即可得答案.【詳解】如圖連接AC,,,,菱形ABCD的周長,故選C.【點睛】本題考查了菱形的性質(zhì)、線段的垂直平分線的性質(zhì)等知識,熟練掌握的靈活應(yīng)用相關(guān)知識是解題的關(guān)鍵.9、A【解析】根據(jù)一元二次方程判別式的公式進行計算即可.【詳解】解:在這個方程中,a=1,b=-2,c=0,∴,故選:A.【點睛】本題考查一元二次方程判別式,熟記公式正確計算是本題的解題關(guān)鍵.10、D【解析】求出∠DAE=∠BAC,根據(jù)選項條件判定三角形相似后,可得對應(yīng)邊成比例,再把比例式化為等積式后即可判斷.【詳解】解:∵∠1=∠2,

∴∠1+∠BAE=∠2+∠BAE,

∴∠DAE=∠BAC,

A、∵∠DAE=∠BAC,∠D=∠C,

∴△ADE∽△ACB,∴AEAB∴AB·故本選項錯誤;

B、∵∠B=∠AED,∠DAE=∠BAC,

∴△ADE∽△ACB∴AEAB∴AB·故本選項錯誤;

C、∵AEAB=ADAC,∠∴△ADE∽△ACB,∴AEAB∴AB·故本選項錯誤;

D、∵∠DAE=∠BAC,AEAC=ADAB,

∴△∴ADAB∴AB·故本選項正確;

故選:D.【點睛】本題考查了相似三角形的判定和性質(zhì)的應(yīng)用,比例式化等積式,特別要注意確定好對應(yīng)邊,不要找錯了.11、C【解析】根據(jù),可得矩形的長和寬,易知點的橫坐標(biāo),的縱坐標(biāo),由反比例函數(shù)的關(guān)系式,可用含有的代數(shù)式表示另外一個坐標(biāo),由三角形相似和對稱,可用求出的長,然后把問題轉(zhuǎn)化到三角形中,由勾股定理建立方程求出的值.【詳解】過點作,垂足為,設(shè)點關(guān)于的對稱點為,連接,如圖所示:則,易證,,,在反比例函數(shù)的圖象上,,在中,由勾股定理:即:解得:故選C.【點睛】此題綜合利用軸對稱的性質(zhì),相似三角形的性質(zhì),勾股定理以及反比例函數(shù)的圖象和性質(zhì)等知識,發(fā)現(xiàn)與的比是是解題的關(guān)鍵.12、C【分析】先利用比例性質(zhì)得到AD:AB=3:4,再證明△ADE∽△ABC,然后利用相似比可計算出AC的長.【詳解】解:解:∵AD=9,BD=3,

∴AD:AB=9:12=3:4,

∵DE∥BC,

∴△ADE∽△ABC,∴=,∵AE=6,∴AC=8,故選C.【點睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形;在利用相似三角形的性質(zhì)時主要利用相似比計算線段的長.二、填空題(每題4分,共24分)13、k>0【詳解】∵反比例函數(shù)的圖象在一、三象限,∴k>0,14、y3<y1=y(tǒng)1.【分析】先將二次函數(shù)的一般式化成頂點式,從而求出拋物線的對稱軸,然后根據(jù)二次函數(shù)圖象的對稱性和增減性判斷即可.【詳解】∵y=x1+x+1=(x+)1+,∴圖象的開口向上,對稱軸是直線x=﹣,A(﹣3,y1)關(guān)于直線x=﹣的對稱點是(1,y1),∴y1=y(tǒng)1,∵﹣<<1,∴y3<y1,故答案為y3<y1=y(tǒng)1.【點睛】此題考查的是二次函數(shù)的增減性,掌握二次函數(shù)圖象對稱軸兩側(cè)的對稱性和增減性是解決此題的關(guān)鍵.15、.【解析】試題解析:原式故答案為16、【分析】“正面朝上的數(shù)字是5”的情況數(shù)除以總情況數(shù)6即為所求的概率.【詳解】解:∵拋擲六個面上分別標(biāo)有數(shù)字1,2,3,4,5,6的骰子共有6種結(jié)果,其中“正面朝上的數(shù)字是5”的只有1種,

∴“正面朝上的數(shù)字是5”的概率為,

故答案為:.【點睛】此題主要考查了概率公式的應(yīng)用,概率等于所求情況數(shù)與總情況數(shù)之比.17、【分析】兩塊三角板的邊與的交點所走過的路程,需分類討論,由圖①的點運動到圖②的點,由圖②的點運動到圖③的點,總路程為,分別求解即可.【詳解】如圖,兩塊三角板的邊與的交點所走過的路程,分兩步走:(1)由圖①的點運動到圖②的點,此時:AC⊥DE,點C到直線DE的距離最短,所以CF最短,則PF最長,根據(jù)題意,,,在中,∴;(2)由圖②的點運動到圖③的點,過G作GH⊥DC于H,如下圖,∵,且GH⊥DC,∴是等腰直角三角形,∴,設(shè),則,∴,∴,解得:,即,點所走過的路程:,故答案為:【點睛】本題是一道需要把旋轉(zhuǎn)角的概念和解直角三角形相結(jié)合求解的綜合題,考查學(xué)生綜合運用數(shù)學(xué)知識的能力.正確確定點所走過的路程是解答本題的關(guān)鍵.18、【分析】先提公因式,再用平方差公式分解.【詳解】解:【點睛】本題考查因式分解,掌握因式分解方法是關(guān)鍵.三、解答題(共78分)19、(1)(2)AB+BC=2BE(3)【分析】(1)由AB是直徑可得∠BDC=90°,根據(jù)勾股定理可得BC=5過點D分別作DE⊥BC于點E,DF⊥BA于點F由BD平分∠ABC可得DE=DF=,DF即為所求,(2)過點D分別作DE⊥BC于點E,DF⊥BA于點F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE進而可證△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易證BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如圖易得四邊形BEDF為正方形,BD是對角線,可得正方形邊長為7由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC內(nèi)切圓,M為圓心,N為切點,由切線長定理可得,所以O(shè)N=5-4=1由面積法易得內(nèi)切圓半徑為2【詳解】解:(1)由AB是直徑可得∠BDC=90°,根據(jù)勾股定理可得BC=5過點D分別作DE⊥BC于點E,DF⊥BA于點F由BD平分∠ABC可得DE=DF=,DF即為所求(2)過點D分別作DE⊥BC于點E,DF⊥BA于點F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE進而可證△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易證BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如圖易得四邊形BEDF為正方形,BD是對角線,可得正方形邊長為7由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC內(nèi)切圓,M為圓心,N為切點,由切線長定理可得,所以O(shè)N=5-4=1由面積法易得內(nèi)切圓半徑為2∴,故答案:(1)(2)AB+BC=2BE(3)【點睛】本題主要考查角平分線、三角形全等及三角形內(nèi)心與外心的綜合,難度較大,需靈活運用各知識求解.20、(1)見解析;(2)OF=1.1【分析】(1)由題意連接CD、OD,求得即可證明DE是⊙O的切線;(2)根據(jù)題意運用切線的性質(zhì)、角平分線性質(zhì)和勾股定理以及三角形的面積公式進行綜合分析求解.【詳解】解:(1)證明:連接CD,OD∵∠ACB=90°,BC為⊙O直徑,∴∠BDC=∠ADC=90°,∵E為AC中點,∴EC=ED=AE,∴∠ECD=∠EDC;又∵∠OCD=∠CDO,∴∠EDC+∠CDO=∠ECD+∠OCD=∠ACB=90°,∴DE是⊙O的切線.(2)解:連接CD,OE,∵∠ACB=90°,∴AC為⊙O的切線,∵DE是⊙O的切線,∴EO平分∠CED,∴OE⊥CD,F(xiàn)為CD的中點,∵點E、O分別為AC、BC的中點,∴OE=AB==5,在Rt△ACB中,∠ACB=90°,AB=10,BC=6,由勾股定理得:AC=1,∵在Rt△ADC中,E為AC的中點,∴DE=AC==4,在Rt△EDO中,OD=BC==3,DE=4,由勾股定理得:OE=5,由三角形的面積公式得:S△EDO=,即4×3=5×DF,解得:DF=2.4,在Rt△DFO中,由勾股定理得:OF===1.1.【點睛】本題考查圓的綜合問題,熟練掌握并運用切線的性質(zhì)和勾股定理以及角平分線性質(zhì)等知識點進行推理和計算是解此題的關(guān)鍵.21、(2)b=5,k=4;(2);(3)2<m<2.【分析】(2)把B(4,2)分別代入y=﹣x+b和y=,即可得到b,k的值;(2)根據(jù)反比例函數(shù)的性質(zhì),即可得到函數(shù)值y的取值范圍;(3)將直線y=﹣x+5向下平移m個單位后解析式為y=﹣x+5﹣m,依據(jù)﹣x+5﹣m=,可得△=(m﹣5)2﹣26,當(dāng)直線與雙曲線只有一個交點時,根據(jù)△=0,可得m的值.【詳解】解:(2)∵直線y=﹣x+b過點B(4,2),∴2=﹣4+b,解得b=5,∵反比例函數(shù)y=的圖象過點B(4,2),∴k=4;(2)∵k=4>0,∴當(dāng)x>0時,y隨x值增大而減小,∴當(dāng)2≤x≤6時,≤y≤2;(3)將直線y=﹣x+5向下平移m個單位后解析式為y=﹣x+5﹣m,設(shè)直線y=﹣x+5﹣m與雙曲線y=只有一個交點,令﹣x+5﹣m=,整理得x2+(m﹣5)x+4=0,∴△=(m﹣5)2﹣26=0,解得m=2或2.∴直線與雙曲線沒有交點時,2<m<2.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)交點問題,一次函數(shù)圖象與幾何變換以及一元二次方程根與系數(shù)的關(guān)系的運用,解題時注意:求反比例函數(shù)與一次函數(shù)的交點坐標(biāo),把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.22、(1)=;=;(2)第一個月批發(fā)商降價10元時,銷售完這批恤獲得的利潤為1000元.【分析】(1)根據(jù)展開計算即可.(2)依題意列出方程即可解決問題.【詳解】(1)=.=.(2)設(shè)第一個月批發(fā)商降價元,銷售完這批恤獲得的利潤為1000元,由題意,整理得,解得=0或10(不合題意,會去),,∴第一個月批發(fā)商降價10元時,銷售完這批恤獲得的利潤為1000元.【點睛】本題考查二次函數(shù)的應(yīng)用、方程等知識,解題的關(guān)鍵是構(gòu)建二次函數(shù)和方程解決實際問題,屬于常考題型.23、(1)A(﹣,0),B(,0);拋物線解析式y(tǒng)=x2+x﹣;(2)12;(3)(0,),(0,﹣)【分析】(1)在y=mx2+3mx﹣m中令y=0,解方程求得x的值即可求得A、B的坐標(biāo),繼而根據(jù)已知求出點D的坐標(biāo),把點D坐標(biāo)代入函數(shù)解析式y(tǒng)=mx2+3mx﹣m利用待定系數(shù)法求得m即可得函數(shù)解析式;(2)先求出直線AD解析式,再根據(jù)直線BE∥AD,求得直線BE解析式,繼而可得點E坐標(biāo),如圖2,作點P關(guān)于AE的對稱點P',作點E關(guān)于x軸的對稱點E',根據(jù)對稱性可得PQ=P'Q,PE=EP'=P'E',從而有DQ+PQ+PE=DQ+P'Q+P'E',可知當(dāng)D,Q,E'三點共線時,DQ+PQ+PE值最小,即DQ+PQ+PE最小值為DE',根據(jù)D、E'坐標(biāo)即可求得答案;(3)分情況進行討論即可得答案.【詳解】(1)∵令y=0,∴0=mx2+3mx﹣m,∴x1=,x2=﹣,∴A(﹣,0),B(,0),∴頂點D的橫坐標(biāo)為﹣,∵直線y=﹣x﹣與x軸所成銳角為30°,且D,B關(guān)于y=﹣x﹣對稱,∴∠DAB=60°,且D點橫坐標(biāo)為﹣,∴D(﹣,﹣3),∴﹣3=m﹣m﹣m,∴m=,∴拋物線解析式y(tǒng)=x2+x﹣;(2)∵A(﹣,0),D(﹣,﹣3),∴直線AD解析式y(tǒng)=﹣x﹣,∵直線BE∥AD,∴直線BE解析式y(tǒng)=﹣x+,∴﹣x﹣=﹣x+,∴x=,∴E(,﹣3),如圖2,作點P關(guān)于AE的對稱點P',作點E關(guān)于x軸的對稱點E',根據(jù)對稱性可得PQ=P'Q,PE=EP'=P'E',∴DQ+PQ+PE=DQ+P'Q+P'E',∴當(dāng)D,Q,E'三點共線時,DQ+PQ+PE值最小,即DQ+PQ+PE最小值為DE',∵D(﹣,﹣3),E'(,3),∴DE'=12,∴DQ+PQ+PE最小值為12;(3)∵拋物線y=(x+)2﹣3圖象向右平移個單位,再向上平移3個單位,∴平移后解析式y(tǒng)=x2,當(dāng)x=3時,y=3,∴M(3,3),如圖3若以AM為直角邊,點M是直角頂點,在AM上方作等腰直角△AME,則∠EAM=45°,直線AE交y軸于F點,作MG⊥x軸,EH⊥MG,則△EHM≌△AMG,∵A(﹣,0),M(3,3),∴E(3﹣3,3+),∴直線AE解析式:y=x+,∴F(0,),若以AM為直角邊,點M是直角頂點,在AM上方作等腰直角△AME,同理可得:F(0,﹣).【點睛】本題考查了待定系數(shù)法、軸對稱的性質(zhì)、拋物線的平移、線段和的最小值問題、全等三角形的判定與性質(zhì)等,綜合性較強,有一定的難度,準(zhǔn)確添加輔助線、熟練應(yīng)用相關(guān)知識是解題的關(guān)鍵.24、(1)詳見解析;(2)詳見解析.【分析】(1)根據(jù)圓的對稱性即可求出答案;(2)先證明△BCD∽△BDF,利用相似三角形的性質(zhì)可知:,利用BC=AC即可求證=AC?BF;【詳解】解:(1)∵,平分,∴,,∴是圓的直徑∵AB∥EF,∴,∵是圓的半徑,∴是的切線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論