向量量化編碼_第1頁
向量量化編碼_第2頁
向量量化編碼_第3頁
向量量化編碼_第4頁
向量量化編碼_第5頁
已閱讀5頁,還剩86頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

CompressionCode

VectorQuantization向量量化編碼

在向量量化編碼中,則是把輸入數(shù)據(jù)幾個一組地分成許多組,成組地量化編碼,即將這些數(shù)看成一個k維向量,然后以向量為單位逐個向量進行量化。向量量化是一種限失真編碼,其原理仍可用信息論中的率失真函數(shù)理論來分析。

Principleofvectorquantizationencoding衡量兩個向量之間接近程度的度量標準可以用均方誤差準則:其他準則????在向量量化編碼中,關鍵是碼本的建立和碼字搜索算法。

碼本的生成算法有兩種類型:一種是已知信源分布特性的設計算法;另一種是未知信源分布,但已知信源的一列具有代表性且足夠長的樣點集合(即訓練序列)的設計算法。碼字搜索是向量量化中的一個最基本問題,向量量化過程本身實際上就是一個搜索過程,即搜索出與輸入最為匹配的碼字。

DiscreteCosineTransformFFT一個變量的周期函數(shù)g(x)能夠通過傅立葉級數(shù)表示出來:系數(shù)(A0、An和Bn)的值按照下面的公式計算:

傅立葉變換(FourierTransform)的物理意義:將信號從時間域(timedomain)變換到頻率域(frequencydomain)。DFT正變換:給定一個二維信號的樣本序列{x(k,l),k=0,1,…,N-1,l=0,1,…,N-1},二維離散傅立葉變換(2D-DFT)

逆變換:

DCTTheDFTtransformsacomplexsignalintoitscomplexspectrum.However,ifthesignalisreal(asinmostoftheapplications),halfofthedataisredundant.(Theimaginarypartofthesignalisallzeroandboththerealandimaginarypartsofthespectrumaresymmetry.)Asarealtransform,Discretecosinetransform(DCT)transformsrealdataintorealspectrumandthereforeavoidstheproblemofredundancy.AlsoasDCTisderivedfromDFT,allthedesirablepropertiesofDFTarepreserved.一個變量的周期函數(shù)g(x)能夠通過傅立葉級數(shù)表示出來:系數(shù)(A0、An和Bn)的值按照下面的公式計算:

2DDCT2D-DCT:2D-IDCT:The2D-DCTisseparable!

TheDCT,unliketheFouriertransform,isspatiallyvariant.

TheDCTissensitivetophase,sothatanobjectmovingacrossthescreenwillhavedifferentfrequencycontentfromframetoframe.

Thisalsomeansthatthevisibilityofcodingartifactsduetocoefficientquantizationwillvarysomewhatdependingonthepositionofanobject(edge)intheimage.

becausetheDCTisastrictlyboundedblocktransform,lossycodingwillproduceblock-edgemismatchwhichwillbevisibleatsomelevelofquantizationevenifthereisonlylowfrequencycontentinthatarea.Blocksize8×8????smallblockfastercorrelationexistsbetweenneighboringpixelslargeblockbettercompressioninsmoothregions20020218918818917517517520020319818818918217817520320020019520018718517520020020020019718718718720020520020019518818717520020020020020019018717520520019920019118718717521020020020018818518718651565-12412-85-163200-11-23-12611-1301-2-83-42-2-3-5-20-27-540-1-40-3-1041-103-2-333-1-1-3-25-24-22-30ThefirstcoefficientB(0,0)istheDCcomponent,theaverageintensityThetop-leftcoefficientsrepresentlowfrequencies,thebottomright–highfrequenciesZig-ZagScan123451565-12412-85-163200-11-23-12611-1301-2-83-42-2-3-5-20-27-540-1-40-3-1041-103-2-333-1-1-3-25-24-22-30QuantizationIdea:getridofthefrequenciesintheimagethatareirrelevanttothehumaneye.TwodifferentmethodsforquantizationUniform(dividingbyaconstantnumber)UsingquantizationtablesQuantizationtablescanbescaledupordowntoadjustthequalityfactor1611101624405161121214192658605514131624405769561417222951878062182237566810910377243555648110411392496478871031211201017292959811210010399326-100000-10000000-10100000-100000000000000000000000000000000000000051266-1000000-120000000-1401600000-1400000000000000000000000000000000000000019919619118618217817717620119919619218818318017820320320220019518918318020220320420319819118318020020120220119618918217720020019919719218618117720420219919519018618318120720420019419018718518416-227-3-2-1-142-41-1-2-30-3-2-55-22-5-2-3-4-3-1-44804-2-1-1-1520013846-2120511463-406-2-222conclusionDCTenablesimagecompressionbyconcentratingmostimageinformationinthelowfrequenciesLooseunimportantimageinfo(highfrequencies)bycuttingB(u,v)atbottomrightThedecodercomputestheinverseDCT–IDCTRGB?YUVConversionRGBtoYUVY=(0.257*R)+(0.504*G)+(0.098*B)+16Cb=-(0.148*R)-(0.291*G)+(0.439*B)+128Cr=(0.439*R)-(0.368*G)-(0.071*B)+128YUVtoRGBR=1.164(Y-16)+1.596(V-128)

G=1.164(Y-16)-0.813(V-128)-0.391(U-128)B=1.164(Y-16)+2.018(U-128)ChrominanceSub-SamplingHumaneyeismoresensitivetowardschangesinluminanceratherthanincolorLuminanceQuantizationTable

ChrominanceQuantizationTableLimitationoftheDCTTimesignaltransformthefrequencyinformationNotemporalapplicationDatacompression(JPEG)SignalanalysisWatermarkingWaveletTransformCodingMulti-resolutionanalysisofthesequence:takingaveragesanddifferenceandkeepingresultsforeverystep.Forimages,thiswouldbeequivalenttocreatingsmallerandsmallersummaryimages,one-quarterthesizeforeachstep,andkeepingtrackofdifferencefortheaverageaswell.Mentallystackingthefull-sizeimage,thequarter-sizeimage,thesixteenthsizeimage,andsoon,createsapyramid.thefullset,alongwithdifferenceimages,isthemulti-resolutionanalysis.Theobjectiveofthewavelettransformistodecomposetheinputsignal,forcompressionpurpose,componentsthatareeasiertodealwith;havingspecialinterpretations,havingsomecomponentsthatcanbethresholdaway.Furthermore,wewanttobeableatleastapproximatelyreconstructtheoriginalsignal,givethesecomponents.Supposewearegiventhefollowinginputsequences:Considerthetransformthatreplacestheoriginalsequencewithitspair-wiseaverageanddifference.Wavelettransformdecomposesasignalintoasetofbasisfunctions.Thesebasisfunctionsarecalled

waveletsWaveletsareobtainedfromasingleprototypewavelet

y(t)calledmotherwavelet

bydilationsandshiftingwhereaisthescalingparameter

bistheshiftingparameterThecontinuouswavelettransform(CWT)ofafunctionfisdefinedasIfyissuchthat

fcanbereconstructedbyaninversewavelettransform:

DiscretewaveletsDiscretewaveletsareformedamotherwavelet,butwithscaleandshiftindiscretesteps.Notethat:

1):wechangethescaleoftranslationalongwiththeoverallscale2j,soastokeepmovementinthelower-resolutionimageproportion.

2):AlargeindexjcorrespondstoacoarserversionoftheimageMulti-resolutionanalysisprovidethetoolto

adaptsignalresolutiontoonlyrelevantdetailsforparticulartask.Mallatdecomposesasignalintoanapproximationcomponentandadetailcomponent.Theapproximationcomponentisthenrecursivelydecomposedintoapproximationcomponentanddetailsuccessivelycoarserscales.Waveletsaresetupsuchthattheapproximationatresolution2-jcontainsallthenecessaryinformationtocomputeanapproximationatcoarserresolution2-(j+1)Waveletsareusedtocharacterizedetailinformation.Theaveraginginformationisformallydeterminedbyakindofdualtothemotherwavelet,calledthescalingfunctionWeperformthe2-Dwavelettransformbyapplying1-Dwavelettransformfirstonrowsandthenoncolumns.LHLLLHHLHHLL1HL1LH1HH1LL2HL2HL1LH2HH2LH1HH1HL2HL1LH2HH2LH1HH1LL3HL3LH3HH3firstSecondThird運用filter中:低通濾波器為高通濾波器為的小波變換的LL和LH分量Step1:的每行進行偶延拓得到

的每行進行低通濾波得到

Step2:Step3:的每列進行偶延拓得到

的每列進行低通濾波得到Step4:隔二抽一得到LL分量

的每列進行高通濾波得到

Step5:隔二抽一得到LH分量

96.64%0.41%0.92%0.35%0.94%0.27%0.43%ApplicationsSignalprocessingTargetidentification.Seismicandgeophysicalsignalprocessing.Medicalandbiomedicalsignalandimageprocessing.Imagecompression(verygoodresultforhighcompressionratio).Audiocompression(achallengeforhigh-qualityaudio).Signalde-noising.多尺度子波圖像融合—結(jié)構圖待檢原始彩色圖像光線校正YCbCr膚色HIS膚色像素級融合融合不同膚色模型下的膚色圖彩色圖像轉(zhuǎn)化為灰度灰度圖像的小波LL子圖像HL子圖像LH子圖像像素級融合子圖像人臉檢測和校驗原始圖像人臉區(qū)域及尺寸根據(jù)人臉邊緣特征,運用多尺度子波圖像融合算法:

多尺度子波圖像融合--YCbCrRGBYCbCr空間Y分量

YCbCr空間Cb分量

YCbCr空間Cr分量多尺度子波圖像融合--膚色圖像YCbCr空間的膚色分割多尺度子波圖像融合--膚色圖像多尺度子波圖像融合--HSIHSI空間的膚色分割多尺度子波圖像融合—HIS和YCbCr

YCbCrHSI融合結(jié)果多尺度子波圖像融合

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論