2022-2023學(xué)年河南省開封市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2022-2023學(xué)年河南省開封市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2022-2023學(xué)年河南省開封市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2022-2023學(xué)年河南省開封市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2022-2023學(xué)年河南省開封市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年河南省開封市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(40題)1.

2.

()A.x2

B.2x2

C.xD.2x

3.設(shè)函數(shù)f(x)=2lnx+ex,則f(2)等于()。

A.eB.1C.1+e2

D.ln2

4.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)

5.

6.設(shè)f(x)在x=0處有二階連續(xù)導(dǎo)數(shù)

則x=0是f(x)的()。

A.間斷點(diǎn)B.極大值點(diǎn)C.極小值點(diǎn)D.拐點(diǎn)

7.

8.二次積分等于()A.A.

B.

C.

D.

9.設(shè)x是f(x)的一個原函數(shù),則f(x)=A.A.x2/2B.2x2

C.1D.C(任意常數(shù))

10.

11.

12.

13.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=()。A.

B.

C.

D.

14.

A.

B.

C.

D.

15.

16.

17.

18.

19.A.

B.

C.

D.

20.A.-3-xln3

B.-3-x/ln3

C.3-x/ln3

D.3-xln3

21.

22.

有()個間斷點(diǎn)。

A.1B.2C.3D.4

23.

A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)

24.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當(dāng)x<-1時,f(x)<0;當(dāng)x>-1時,f(x)>0.則下列結(jié)論肯定正確的是().

A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)

25.

26.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2

27.

28.

29.

30.設(shè)函數(shù)f(x)=arcsinx,則f'(x)等于().

A.-sinx

B.cosx

C.

D.

31.

32.力偶對剛體產(chǎn)生哪種運(yùn)動效應(yīng)()。

A.既能使剛體轉(zhuǎn)動,又能使剛體移動B.與力產(chǎn)生的運(yùn)動效應(yīng)有時候相同,有時不同C.只能使剛體轉(zhuǎn)動D.只能使剛體移動

33.

34.

35.

A.6xarctanx2

B.6xtanx2+5

C.5

D.6xcos2x

36.

37.A.有一個拐點(diǎn)B.有兩個拐點(diǎn)C.有三個拐點(diǎn)D.無拐點(diǎn)38.當(dāng)x→0時,3x2+2x3是3x2的()。A.高階無窮小B.低階無窮小C.同階無窮小但不是等價無窮小D.等價無窮小

39.

40.按照盧因的觀點(diǎn),組織在“解凍”期間的中心任務(wù)是()

A.改變員工原有的觀念和態(tài)度B.運(yùn)用策略,減少對變革的抵制C.變革約束力、驅(qū)動力的平衡D.保持新的組織形態(tài)的穩(wěn)定二、填空題(50題)41.

42.cosx為f(x)的一個原函數(shù),則f(x)=______.43.設(shè)y=(1+x2)arctanx,則y=________。44.45.46.y=x3-27x+2在[1,2]上的最大值為______.

47.

48.

49.

50.

51.

52.

53.

54.設(shè)區(qū)域D由y軸,y=x,y=1所圍成,則.

55.

56.

57.

58.59.

60.

61.

62.

63.

64.

65.66.冪級數(shù)的收斂半徑為______.67.微分方程y''+y=0的通解是______.68.設(shè)z=ln(x2+y),則全微分dz=__________。69.70.

71.

72.73.交換二重積分次序=______.

74.

75.76.設(shè)y=ln(x+2),貝y"=________。

77.

78.

79.80.微分方程y''+6y'+13y=0的通解為______.81.82.已知平面π:2x+y-3z+2=0,則過點(diǎn)(0,0,0)且與π垂直的直線方程為______.83.84.85.過點(diǎn)M0(2,0,-1)且平行于的直線方程為______.

86.

87.設(shè)z=xy,則出=_______.88.

89.

90.三、計(jì)算題(20題)91.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.92.

93.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

94.求微分方程y"-4y'+4y=e-2x的通解.

95.96.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.97.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.98.

99.100.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則

101.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

102.求微分方程的通解.

103.

104.105.求曲線在點(diǎn)(1,3)處的切線方程.106.證明:107.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).108.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.109.將f(x)=e-2X展開為x的冪級數(shù).

110.

四、解答題(10題)111.求112.設(shè)F(x)為f(x)的一個原函數(shù),且f(x)=xlnx,求F(x).113.設(shè)x2為f(x)的原函數(shù).求.114.115.設(shè)z=xy3+2yx2求

116.

117.

118.

119.120.在曲線y=x2(x≥0)上某點(diǎn)A(a,a2)處作切線,使該切線與曲線及x軸所圍成的圖形的面積為1/12.試求:(1)切點(diǎn)A的坐標(biāo)((a,a2).(2)過切點(diǎn)A的切線方程.五、高等數(shù)學(xué)(0題)121.若,則()。A.-1B.0C.1D.不存在六、解答題(0題)122.

參考答案

1.D

2.A

3.C

4.C本題考查的知識點(diǎn)為可變限積分求導(dǎo).

由于當(dāng)f(x)連續(xù)時,,可知應(yīng)選C.

5.C

6.C則x=0是f(x)的極小值點(diǎn)。

7.D解析:

8.A本題考查的知識點(diǎn)為交換二次積分的積分次序.

由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:

0≤x≤1,0≤y≤1-x,

其圖形如圖1-1所示.

交換積分次序,D可以表示為

0≤y≤1,0≤x≤1-y,

因此

可知應(yīng)選A.

9.Cx為f(x)的一個原函數(shù),由原函數(shù)定義可知f(x)=x'=1,故選C。

10.D解析:

11.C

12.C

13.C

14.D

故選D.

15.C解析:

16.D

17.A解析:

18.A

19.A

20.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.

21.C解析:

22.C

∵x=0,1,2,是f(x)的三個孤立間斷∴有3個間斷點(diǎn)。

23.C

本題考查的知識點(diǎn)為可變限積分求導(dǎo).

24.C本題考查的知識點(diǎn)為極值的第-充分條件.

由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時f(x)<0;當(dāng)x>-1時,

f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.

25.A

26.C本題考查的知識點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。

27.B

28.C

29.C

30.C解析:本題考查的知識點(diǎn)為基本導(dǎo)數(shù)公式.

可知應(yīng)選C.

31.C解析:

32.A

33.D

34.A

35.C

36.A

37.D

38.D本題考查的知識點(diǎn)為無窮小階的比較。

由于,可知點(diǎn)x→0時3x2+2x3與3x2為等價無窮小,故應(yīng)選D。

39.D解析:

40.A解析:組織在解凍期間的中心任務(wù)是改變員工原有的觀念和態(tài)度。

41.42.-sinx本題考查的知識點(diǎn)為原函數(shù)的概念.

由于cosx為f(x)的原函數(shù),可知

f(x)=(cosx)'=-sinx.43.因?yàn)閥=(1+x2)arctanx,所以y"=2xarctanx+(1+x2)。=2xarctanx+1。44.0

45.46.-24本題考查的知識點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.

若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:

(1)求出f'(x).

(2)求出f(x)在(a,b)內(nèi)的駐點(diǎn)x1,…,xk.

(3)比較f(x1),f(x2),…,f(xk),f(a),f(b).其中最大(小)值為f(x)在[a,b]上的最大(小)值,相應(yīng)的點(diǎn)x為f(x)的最大(小)值點(diǎn).

y=x3-27x+2,

則y'=3x2-27=3(x-3)(x+3),

令y'=0得y的駐點(diǎn)x1=-3,x2=3,可知這兩個駐點(diǎn)都不在(1,2)內(nèi).

由于f(1)=-24,f(2)=-44,可知y=x3-27x+2在[1,2]上的最大值為-24.

本題考生中出現(xiàn)的錯誤多為求出駐點(diǎn)x1=-3,x2=3之后,直接比較

f(-3)=56,f(3)=-52,f(1)=-24,f(2)=-44,

得出y=x3-27x+2在[1,2]上的最大值為f(-3)=56.其錯誤的原因是沒有判定駐點(diǎn)x1=-3,x2=3是否在給定的區(qū)間(1,2)內(nèi),這是值得考生注意的問題.在模擬試題中兩次出現(xiàn)這類問題,目的就是希望能引起考生的重視.

本題還可以采用下列解法:注意到y(tǒng)'=3(x-3)(x+3),在區(qū)間[1,2]上有y'<0,因此y為單調(diào)減少函數(shù)??芍?/p>

x=2為y的最小值點(diǎn),最小值為y|x=2=-44.

x=1為y的最大值點(diǎn),最大值為y|x=1=-24.

47.

48.x=2x=2解析:

49.

50.y=f(0)51.本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由于z=x2+3xy+2y2-y,可得

52.

53.254.1/2本題考查的知識點(diǎn)為計(jì)算二重積分.其積分區(qū)域如圖1-2陰影區(qū)域所示.

可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.

解法1由二重積分的幾何意義可知表示積分區(qū)域D的面積,而區(qū)域D為等腰直角三角形,面積為1/2,因此.

解法2化為先對y積分,后對x積分的二次積分.

作平行于y軸的直線與區(qū)域D相交,沿y軸正向看,入口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此

x≤y≤1.

區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此

0≤x≤1.

可得知

解法3化為先對x積分,后對Y積分的二次積分.

作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y,作為積分上限,因此

0≤x≤y.

區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此

0≤y≤1.

可得知

55.ln|1-cosx|+Cln|1-cosx|+C解析:

56.

57.1/4

58.

59.解析:

60.61.2本題考查的知識點(diǎn)為二重積分的幾何意義.

由二重積分的幾何意義可知,所給二重積分的值等于長為1,寬為2的矩形的面積值,故為2.或由二重積分計(jì)算可知

62.

63.

64.-ln(3-x)+C-ln(3-x)+C解析:

65.1/3本題考查了定積分的知識點(diǎn)。66.0本題考查的知識點(diǎn)為冪級數(shù)的收斂半徑.

所給冪級數(shù)為不缺項(xiàng)情形

因此收斂半徑為0.67.y=C1cosx+C2sinx微分方程y''+y=0的特征方程是r2+1=0,故特征根為r=±i,所以方程的通解為y=C1cosx+C2sinx.

68.

69.4π本題考查了二重積分的知識點(diǎn)。

70.

71.(03)(0,3)解析:72.1.

本題考查的知識點(diǎn)為二元函數(shù)的極值.

可知點(diǎn)(0,0)為z的極小值點(diǎn),極小值為1.

73.本題考查的知識點(diǎn)為交換二重積分次序.

積分區(qū)域D:0≤x≤1,x2≤y≤x

積分區(qū)域D也可以表示為0≤y≤1,y≤x≤,因此

74.3x2+4y3x2+4y解析:75.1.

本題考查的知識點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.

由于f(1)=2,可知

76.

77.

78.0

79.

80.y=e-3x(C1cos2x+C2sin2x)微分方程y''+6y'+13y=0的特征方程為r2+6r+13=0,特征根為所以微分方程的通解為y=e-3x(C1cos2x+C2sin2x).

81.

82.本題考查的知識點(diǎn)為直線的方程和平面與直線的關(guān)系.

由于直線與已知平面垂直,可知直線的方向向量s與平面的法向量n平行.可以取s=n=(2,1,-3),又已知直線過點(diǎn)(0,0,0),由直線的標(biāo)準(zhǔn)式方程可知

為所求.

83.

84.

85.

86.2

87.88.

本題考查的知識點(diǎn)為定積分計(jì)算.

可以利用變量替換,令u=2x,則du=2dx,當(dāng)x=0時,u=0;當(dāng)x=1時,u=2.因此

89.(-33)

90.本題考查了交換積分次序的知識點(diǎn)。91.由二重積分物理意義知

92.

93.

94.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

95.

96.函數(shù)的定義域?yàn)?/p>

注意

97.

98.由一階線性微分方程通解公式有

99.

100.由等價無窮小量的定義可知

101.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論