2023學(xué)年貴州省遵義市匯川區(qū)航天高考數(shù)學(xué)二模試卷含解析_第1頁(yè)
2023學(xué)年貴州省遵義市匯川區(qū)航天高考數(shù)學(xué)二模試卷含解析_第2頁(yè)
2023學(xué)年貴州省遵義市匯川區(qū)航天高考數(shù)學(xué)二模試卷含解析_第3頁(yè)
2023學(xué)年貴州省遵義市匯川區(qū)航天高考數(shù)學(xué)二模試卷含解析_第4頁(yè)
2023學(xué)年貴州省遵義市匯川區(qū)航天高考數(shù)學(xué)二模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.對(duì)于任意,函數(shù)滿足,且當(dāng)時(shí),函數(shù).若,則大小關(guān)系是()A. B. C. D.2.函數(shù)的圖象的大致形狀是()A. B. C. D.3.設(shè)集合,,若,則的取值范圍是()A. B. C. D.4.已知平面向量,,,則實(shí)數(shù)x的值等于()A.6 B.1 C. D.5.2020年是脫貧攻堅(jiān)決戰(zhàn)決勝之年,某市為早日實(shí)現(xiàn)目標(biāo),現(xiàn)將甲、乙、丙、丁4名干部派遺到、、三個(gè)貧困縣扶貧,要求每個(gè)貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種6.已知雙曲線:(,)的右焦點(diǎn)與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長(zhǎng)為,則雙曲線的離心率為()A.2 B. C. D.37.函數(shù)在的圖象大致為()A. B.C. D.8.在等腰直角三角形中,,為的中點(diǎn),將它沿翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球的表面積為().A. B. C. D.9.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學(xué)趣味.著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達(dá)式來描述,它們是一些形如的簡(jiǎn)單正弦函數(shù)的和,其中頻率最低的一項(xiàng)是基本音,其余的為泛音.由樂聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.10.某大學(xué)計(jì)算機(jī)學(xué)院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領(lǐng)域的語(yǔ)音識(shí)別、人臉識(shí)別,數(shù)據(jù)分析、機(jī)器學(xué)習(xí)、服務(wù)器開發(fā)五個(gè)方向展開研究,且每個(gè)方向均有研究生學(xué)習(xí),其中劉澤同學(xué)學(xué)習(xí)人臉識(shí)別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種11.劉徽是我國(guó)魏晉時(shí)期偉大的數(shù)學(xué)家,他在《九章算術(shù)》中對(duì)勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補(bǔ),各從其類,因就其余不移動(dòng)也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長(zhǎng)為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機(jī)取一個(gè)點(diǎn),此點(diǎn)取自朱方的概率為()A. B. C. D.12.設(shè)為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知是同一球面上的四個(gè)點(diǎn),其中平面,是正三角形,,則該球的表面積為______.14.設(shè)函數(shù),若存在實(shí)數(shù)m,使得關(guān)于x的方程有4個(gè)不相等的實(shí)根,且這4個(gè)根的平方和存在最小值,則實(shí)數(shù)a的取值范圍是______.15.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差________,通項(xiàng)公式________.16.三棱錐中,點(diǎn)是斜邊上一點(diǎn).給出下列四個(gè)命題:①若平面,則三棱錐的四個(gè)面都是直角三角形;②若,,,平面,則三棱錐的外接球體積為;③若,,,在平面上的射影是內(nèi)心,則三棱錐的體積為2;④若,,,平面,則直線與平面所成的最大角為.其中正確命題的序號(hào)是__________.(把你認(rèn)為正確命題的序號(hào)都填上)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知分別是橢圓的左、右焦點(diǎn),直線與交于兩點(diǎn),,且.(1)求的方程;(2)已知點(diǎn)是上的任意一點(diǎn),不經(jīng)過原點(diǎn)的直線與交于兩點(diǎn),直線的斜率都存在,且,求的值.18.(12分)已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,且.若點(diǎn)為的準(zhǔn)線上的任意一點(diǎn),過點(diǎn)作的兩條切線,其中為切點(diǎn).(1)求拋物線的方程;(2)求證:直線恒過定點(diǎn),并求面積的最小值.19.(12分)如圖在棱錐中,為矩形,面,(1)在上是否存在一點(diǎn),使面,若存在確定點(diǎn)位置,若不存在,請(qǐng)說明理由;(2)當(dāng)為中點(diǎn)時(shí),求二面角的余弦值.20.(12分)如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點(diǎn).(1)證明:平面(2)若,求二面角的余弦值.21.(12分)某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行了一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“合格”“不合格”兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下:等級(jí)不合格合格得分頻數(shù)624(1)由該題中頻率分布直方圖求測(cè)試成績(jī)的平均數(shù)和中位數(shù);(2)其他條件不變,在評(píng)定等級(jí)為“合格”的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測(cè)試得分低于80分的前提下,第2次抽取的測(cè)試得分仍低于80分的概率;(3)用分層抽樣的方法,從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再?gòu)倪@10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.22.(10分)如圖,三棱柱中,底面是等邊三角形,側(cè)面是矩形,是的中點(diǎn),是棱上的點(diǎn),且.(1)證明:平面;(2)若,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

由已知可得的單調(diào)性,再由可得對(duì)稱性,可求出在單調(diào)性,即可求出結(jié)論.【詳解】對(duì)于任意,函數(shù)滿足,因?yàn)楹瘮?shù)關(guān)于點(diǎn)對(duì)稱,當(dāng)時(shí),是單調(diào)增函數(shù),所以在定義域上是單調(diào)增函數(shù).因?yàn)?,所以?故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較函數(shù)值的大小,解題的關(guān)鍵要掌握函數(shù)對(duì)稱性的代數(shù)形式,屬于中檔題..2.B【解析】

根據(jù)函數(shù)奇偶性,可排除D;求得及,由導(dǎo)函數(shù)符號(hào)可判斷在上單調(diào)遞增,即可排除AC選項(xiàng).【詳解】函數(shù)易知為奇函數(shù),故排除D.又,易知當(dāng)時(shí),;又當(dāng)時(shí),,故在上單調(diào)遞增,所以,綜上,時(shí),,即單調(diào)遞增.又為奇函數(shù),所以在上單調(diào)遞增,故排除A,C.故選:B【點(diǎn)睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,導(dǎo)函數(shù)性質(zhì)與函數(shù)圖象關(guān)系,屬于中檔題.3.C【解析】

由得出,利用集合的包含關(guān)系可得出實(shí)數(shù)的取值范圍.【詳解】,且,,.因此,實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用集合的包含關(guān)系求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.4.A【解析】

根據(jù)向量平行的坐標(biāo)表示即可求解.【詳解】,,,,即,故選:A【點(diǎn)睛】本題主要考查了向量平行的坐標(biāo)運(yùn)算,屬于容易題.5.B【解析】

分成甲單獨(dú)到縣和甲與另一人一同到縣兩種情況進(jìn)行分類討論,由此求得甲被派遣到縣的分法數(shù).【詳解】如果甲單獨(dú)到縣,則方法數(shù)有種.如果甲與另一人一同到縣,則方法數(shù)有種.故總的方法數(shù)有種.故選:B【點(diǎn)睛】本小題主要考查簡(jiǎn)答排列組合的計(jì)算,屬于基礎(chǔ)題.6.A【解析】

由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因?yàn)閳A被雙曲線的一條漸近線截得的弦長(zhǎng)為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點(diǎn)睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力,是一道容易題.7.B【解析】

先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【點(diǎn)睛】本題考查函數(shù)圖象的判斷,屬于??碱}.8.D【解析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點(diǎn),這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知,翻折后,,,設(shè)外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點(diǎn),設(shè)幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點(diǎn)睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計(jì)算能力,屬于中檔題型,求幾何體的外接球的半徑時(shí),一般可以用補(bǔ)形法,因正方體,長(zhǎng)方體的外接球半徑容易求,可以將一些特殊的幾何體補(bǔ)形為正方體或長(zhǎng)方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.9.C【解析】

由基本音的諧波的定義可得,利用可得,即可判斷選項(xiàng).【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點(diǎn)睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.10.B【解析】

將人臉識(shí)別方向的人數(shù)分成:有人、有人兩種情況進(jìn)行分類討論,結(jié)合捆綁計(jì)算出不同的分配方法數(shù).【詳解】當(dāng)人臉識(shí)別方向有2人時(shí),有種,當(dāng)人臉識(shí)別方向有1人時(shí),有種,∴共有360種.故選:B【點(diǎn)睛】本小題主要考查簡(jiǎn)單排列組合問題,考查分類討論的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.11.C【解析】

首先明確這是一個(gè)幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因?yàn)檎叫螢橹旆?,其面積為9,五邊形的面積為,所以此點(diǎn)取自朱方的概率為.故選:C【點(diǎn)睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于基礎(chǔ)題.12.A【解析】

利用復(fù)數(shù)的除法運(yùn)算化簡(jiǎn),求得對(duì)應(yīng)的坐標(biāo),由此判斷對(duì)應(yīng)點(diǎn)所在象限.【詳解】,對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第一象限.故選:A.【點(diǎn)睛】本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)所在象限,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進(jìn)而求得外接球的表面積.【詳解】設(shè)是等邊三角形的外心,則球心在其正上方處.設(shè),由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【點(diǎn)睛】本小題主要考查幾何體外接球表面積的計(jì)算,屬于基礎(chǔ)題.14.【解析】

先確定關(guān)于x的方程當(dāng)a為何值時(shí)有4個(gè)不相等的實(shí)根,再將這四個(gè)根的平方和表示出來,利用函數(shù)思想來判斷當(dāng)a為何值時(shí)這4個(gè)根的平方和存在最小值即可.【詳解】由題意,當(dāng)時(shí),,此時(shí),此時(shí)函數(shù)在單調(diào)遞減,在單調(diào)遞增,方程最多2個(gè)不相等的實(shí)根,舍;當(dāng)時(shí),函數(shù)圖象如下所示:從左到右方程,有4個(gè)不相等的實(shí)根,依次為,,,,即,由圖可知,故,且,,從而,令,顯然,,要使該式在時(shí)有最小值,則對(duì)稱軸,解得.綜上所述,實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題考查了函數(shù)和方程的知識(shí),但需要一定的邏輯思維能力,屬于較難題.15.2【解析】

直接利用等差數(shù)列公式計(jì)算得到答案.【詳解】,,解得,,故.故答案為:2;.【點(diǎn)睛】本題考查了等差數(shù)列的基本計(jì)算,意在考查學(xué)生的計(jì)算能力.16.①②③【解析】

對(duì)①,由線面平行的性質(zhì)可判斷正確;對(duì)②,三棱錐外接球可看作正方體的外接球,結(jié)合外接球半徑公式即可求解;對(duì)③,結(jié)合題意作出圖形,由勾股定理和內(nèi)接圓對(duì)應(yīng)面積公式求出錐體的高,則可求解;對(duì)④,由動(dòng)點(diǎn)分析可知,當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線與平面所成的角最大,結(jié)合幾何關(guān)系可判斷錯(cuò)誤;【詳解】對(duì)于①,因?yàn)槠矫?,所以,,,又,所以平面,所以,故四個(gè)面都是直角三角形,∴①正確;對(duì)于②,若,,,平面,∴三棱錐的外接球可以看作棱長(zhǎng)為4的正方體的外接球,∴,,∴體積為,∴②正確;對(duì)于③,設(shè)內(nèi)心是,則平面,連接,則有,又內(nèi)切圓半徑,所以,,故,∴三棱錐的體積為,∴③正確;對(duì)于④,∵若,平面,則直線與平面所成的角最大時(shí),點(diǎn)與點(diǎn)重合,在中,,∴,即直線與平面所成的最大角為,∴④不正確,故答案為:①②③.【點(diǎn)睛】本題考查立體幾何基本關(guān)系的應(yīng)用,線面垂直的性質(zhì)及判定、錐體體積、外接球半徑求解,線面角的求解,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)不妨設(shè),,計(jì)算得到,根據(jù)面積得到,計(jì)算得到答案.(2)設(shè),,,聯(lián)立方程利用韋達(dá)定理得到,,代入化簡(jiǎn)計(jì)算得到答案.【詳解】(1)由題意不妨設(shè),,則,.∵,∴,∴.又,∴,∴,,故的方程為.(2)設(shè),,,則.∵,∴,設(shè)直線的方程為,聯(lián)立整理得.∵在上,∴,∴上式可化為.∴,,,∴,,∴.∴.【點(diǎn)睛】本題考查了橢圓方程,定值問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.18.(1)(2)見解析,最小值為4【解析】

(1)根據(jù)焦點(diǎn)到直線的距離列方程,求得的值,由此求得拋物線的方程.(2)設(shè)出的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此判斷出直線恒過拋物線焦點(diǎn).求得三角形面積的表達(dá)式,進(jìn)而求得面積的最小值.【詳解】(1)依題意,解得(負(fù)根舍去)∴拋物線的方程為(2)設(shè)點(diǎn),由,即,得∴拋物線在點(diǎn)處的切線的方程為,即∵,∴∵點(diǎn)在切線上,①,同理,②綜合①、②得,點(diǎn)的坐標(biāo)都滿足方程.即直線恒過拋物線焦點(diǎn)當(dāng)時(shí),此時(shí),可知:當(dāng),此時(shí)直線直線的斜率為,得于是,而把直線代入中消去得,即:當(dāng)時(shí),最小,且最小值為4【點(diǎn)睛】本小題主要考查點(diǎn)到直線的距離公式,考查拋物線方程的求法,考查拋物線的切線方程的求法,考查直線過定點(diǎn)問題,考查拋物線中三角形面積的最值的求法,考查運(yùn)算求解能力,屬于難題.19.(1)見解析;(2)【解析】

(1)要證明PC⊥面ADE,由已知可得AD⊥PC,只需滿足即可,從而得到點(diǎn)E為中點(diǎn);(2)求出面ADE的法向量,面PAE的法向量,利用空間向量的數(shù)量積,求解二面角P﹣AE﹣D的余弦值.【詳解】(1)法一:要證明PC⊥面ADE,易知AD⊥面PDC,即得AD⊥PC,故只需即可,所以由,即存在點(diǎn)E為PC中點(diǎn).法二:建立如圖所示的空間直角坐標(biāo)系D-XYZ,由題意知PD=CD=1,,設(shè),,,由,得,即存在點(diǎn)E為PC中點(diǎn).(2)由(1)知,,,,,,設(shè)面ADE的法向量為,面PAE的法向量為由的法向量為得,得,同理求得所以,故所求二面角P-AE-D的余弦值為.【點(diǎn)睛】本題考查二面角的平面角的求法,考查直線與平面垂直的判定定理的應(yīng)用,考查空間想象能力以及計(jì)算能力.20.(1)詳見解析;(2).【解析】

(1)連接,由菱形的性質(zhì)以及中位線,得,由平面平面,且交線,得平面,故而,最后由線面垂直的判定得結(jié)論.(2)以為原點(diǎn)建平面直角坐標(biāo)系,求出平面平與平面的法向量,,最后求得二面角的余弦值為.【詳解】解:(1)連結(jié)∵,且是的中點(diǎn),∴∵平面平面,平面平面,∴平面.∵平面,∴又為菱形,且為棱的中點(diǎn),∴∴.又∵,平面∴平面.(2)由題意有,∵四邊形為菱形,且∴分別以,,所在直線為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,設(shè),則設(shè)平面的法向量為由,得,令,得取平面的法向量為∴二面角為銳二面角,∴二面角的余弦值為【點(diǎn)睛】處理線面垂直問題時(shí),需要學(xué)生對(duì)線面垂直的判定定理特別熟悉,運(yùn)用幾何語(yǔ)言表示出來方才過關(guān),一定要在已知平面中找兩條相交直線與平面外的直線垂直,才可以證得線面垂直,其次考查了學(xué)生運(yùn)用空間向量處理空間中的二面角問題,培養(yǎng)了學(xué)生的計(jì)算能力和空間想象力.21.(1)64,65;(2);(3).【解析】

(1)根據(jù)頻率分布直方圖及其性質(zhì)可求出,平均數(shù),中位數(shù);(2)設(shè)“第1次抽取的測(cè)試得分低于80分”為事件,“第2次抽取的測(cè)試得分低于80分”為事件,由條件概率公式可求出;(3)從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中隨機(jī)抽取10人進(jìn)行座談,其中“不合格”的學(xué)生數(shù)為,“合格”的學(xué)生數(shù)為6;由題意可得,5,10,15,1,利用“超幾何分布”的計(jì)算公式即可得出概率,進(jìn)而得出分布列與數(shù)學(xué)期望.【詳解】由題意知,樣本容量為,.(1)平均數(shù)為,設(shè)中位數(shù)為,因?yàn)?,所以,則,解得.(2)由題意可知,分?jǐn)?shù)在內(nèi)的學(xué)生有24人,分?jǐn)?shù)在內(nèi)的學(xué)生有12人.設(shè)“第1次抽取的測(cè)試得分低于80分”為事件,“第2次抽取的測(cè)試得分低于80分”為事件,則,所以.(3)在評(píng)定等級(jí)為“合格”和“不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論