版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A.-2 B.2 C.4 D.72.已知雙曲線:(,)的右焦點(diǎn)與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.33.已知函數(shù)的圖象向左平移個(gè)單位后得到函數(shù)的圖象,則的最小值為()A. B. C. D.4.設(shè)為拋物線的焦點(diǎn),,,為拋物線上三點(diǎn),若,則().A.9 B.6 C. D.5.網(wǎng)絡(luò)是一種先進(jìn)的高頻傳輸技術(shù),我國的技術(shù)發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機(jī),現(xiàn)調(diào)查得到該款手機(jī)上市時(shí)間和市場占有率(單位:%)的幾組相關(guān)對(duì)應(yīng)數(shù)據(jù).如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據(jù)數(shù)據(jù)得出關(guān)于的線性回歸方程為.若用此方程分析并預(yù)測該款手機(jī)市場占有率的變化趨勢,則最早何時(shí)該款手機(jī)市場占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月6.設(shè)函數(shù)滿足,則的圖像可能是A. B.C. D.7.已知函數(shù),若不等式對(duì)任意的恒成立,則實(shí)數(shù)k的取值范圍是()A. B. C. D.8.已知曲線且過定點(diǎn),若且,則的最小值為().A. B.9 C.5 D.9.已知函數(shù)若恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.設(shè)α,β為兩個(gè)平面,則α∥β的充要條件是A.α內(nèi)有無數(shù)條直線與β平行B.α內(nèi)有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面11.點(diǎn)為棱長是2的正方體的內(nèi)切球球面上的動(dòng)點(diǎn),點(diǎn)為的中點(diǎn),若滿足,則動(dòng)點(diǎn)的軌跡的長度為()A. B. C. D.12.若的二項(xiàng)式展開式中二項(xiàng)式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.4二、填空題:本題共4小題,每小題5分,共20分。13.平面向量與的夾角為,,,則__________.14.設(shè)P為有公共焦點(diǎn)的橢圓與雙曲線的一個(gè)交點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則______________.15.已知函數(shù),則過原點(diǎn)且與曲線相切的直線方程為____________.16.若函數(shù)(R,)滿足,且的最小值等于,則ω的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左右焦點(diǎn)分別為,焦距為4,且橢圓過點(diǎn),過點(diǎn)且不平行于坐標(biāo)軸的直線交橢圓與兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線交軸于點(diǎn).(1)求的周長;(2)求面積的最大值.18.(12分)在平面直角坐標(biāo)系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點(diǎn),軸非負(fù)半軸為極軸的極坐標(biāo)系中,求曲線的普通方程;(2)若點(diǎn),為曲線上兩動(dòng)點(diǎn),且滿足,求面積的最大值.19.(12分)設(shè),函數(shù),其中為自然對(duì)數(shù)的底數(shù).(1)設(shè)函數(shù).①若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點(diǎn);②求證:對(duì)任意的,直線都不是的切線;(2)設(shè)函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.20.(12分)已知函數(shù)(I)當(dāng)時(shí),解不等式.(II)若不等式恒成立,求實(shí)數(shù)的取值范圍21.(12分)在中,角、、所對(duì)的邊分別為、、,角、、的度數(shù)成等差數(shù)列,.(1)若,求的值;(2)求的最大值.22.(10分)設(shè),,其中.(1)當(dāng)時(shí),求的值;(2)對(duì),證明:恒為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
在等差數(shù)列中由等差數(shù)列公式與下標(biāo)和的性質(zhì)求得,再由等差數(shù)列通項(xiàng)公式求得公差.【詳解】在等差數(shù)列的前項(xiàng)和為,則則故選:B【點(diǎn)睛】本題考查等差數(shù)列中求由已知關(guān)系求公差,屬于基礎(chǔ)題.2.A【解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因?yàn)閳A被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點(diǎn)睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力,是一道容易題.3.A【解析】
首先求得平移后的函數(shù),再根據(jù)求的最小值.【詳解】根據(jù)題意,的圖象向左平移個(gè)單位后,所得圖象對(duì)應(yīng)的函數(shù),所以,所以.又,所以的最小值為.故選:A【點(diǎn)睛】本題考查三角函數(shù)的圖象變換,誘導(dǎo)公式,意在考查平移變換,屬于基礎(chǔ)題型.4.C【解析】
設(shè),,,由可得,利用定義將用表示即可.【詳解】設(shè),,,由及,得,故,所以.故選:C.【點(diǎn)睛】本題考查利用拋物線定義求焦半徑的問題,考查學(xué)生等價(jià)轉(zhuǎn)化的能力,是一道容易題.5.C【解析】
根據(jù)圖形,計(jì)算出,然后解不等式即可.【詳解】解:,點(diǎn)在直線上,令因?yàn)闄M軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C【點(diǎn)睛】考查如何確定線性回歸直線中的系數(shù)以及線性回歸方程的實(shí)際應(yīng)用,基礎(chǔ)題.6.B【解析】根據(jù)題意,確定函數(shù)的性質(zhì),再判斷哪一個(gè)圖像具有這些性質(zhì).由得是偶函數(shù),所以函數(shù)的圖象關(guān)于軸對(duì)稱,可知B,D符合;由得是周期為2的周期函數(shù),選項(xiàng)D的圖像的最小正周期是4,不符合,選項(xiàng)B的圖像的最小正周期是2,符合,故選B.7.A【解析】
先求出函數(shù)在處的切線方程,在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】當(dāng)時(shí),,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點(diǎn)坐標(biāo)為.在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結(jié)合思想可知:不等式對(duì)任意的恒成立,則實(shí)數(shù)k的取值范圍是.故選:A【點(diǎn)睛】本題考查了利用數(shù)形結(jié)合思想解決不等式恒成立問題,考查了導(dǎo)數(shù)的應(yīng)用,屬于中檔題.8.A【解析】
根據(jù)指數(shù)型函數(shù)所過的定點(diǎn),確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點(diǎn)為,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,即時(shí)取得最小值.故選:A【點(diǎn)睛】本題考查指數(shù)型函數(shù)的性質(zhì),以及基本不等式求最值,意在考查轉(zhuǎn)化與變形,基本計(jì)算能力,屬于基礎(chǔ)題型.9.D【解析】
由恒成立,等價(jià)于的圖像在的圖像的上方,然后作出兩個(gè)函數(shù)的圖像,利用數(shù)形結(jié)合的方法求解答案.【詳解】因?yàn)橛珊愠闪?,分別作出及的圖象,由圖知,當(dāng)時(shí),不符合題意,只須考慮的情形,當(dāng)與圖象相切于時(shí),由導(dǎo)數(shù)幾何意義,此時(shí),故.故選:D【點(diǎn)睛】此題考查的是函數(shù)中恒成立問題,利用了數(shù)形結(jié)合的思想,屬于難題.10.B【解析】
本題考查了空間兩個(gè)平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷.【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B.【點(diǎn)睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯(cuò)誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯(cuò)誤.11.C【解析】
設(shè)的中點(diǎn)為,利用正方形和正方體的性質(zhì),結(jié)合線面垂直的判定定理可以證明出平面,這樣可以確定動(dòng)點(diǎn)的軌跡,最后求出動(dòng)點(diǎn)的軌跡的長度.【詳解】設(shè)的中點(diǎn)為,連接,因此有,而,而平面,,因此有平面,所以動(dòng)點(diǎn)的軌跡平面與正方體的內(nèi)切球的交線.正方體的棱長為2,所以內(nèi)切球的半徑為,建立如下圖所示的以為坐標(biāo)原點(diǎn)的空間直角坐標(biāo)系:因此有,設(shè)平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動(dòng)點(diǎn)的軌跡的長度為.故選:C【點(diǎn)睛】本題考查了線面垂直的判定定理的應(yīng)用,考查了立體幾何中軌跡問題,考查了球截面的性質(zhì),考查了空間想象能力和數(shù)學(xué)運(yùn)算能力.12.C【解析】
由二項(xiàng)式系數(shù)性質(zhì),的展開式中所有二項(xiàng)式系數(shù)和為計(jì)算.【詳解】的二項(xiàng)展開式中二項(xiàng)式系數(shù)和為,.故選:C.【點(diǎn)睛】本題考查二項(xiàng)式系數(shù)的性質(zhì),掌握二項(xiàng)式系數(shù)性質(zhì)是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由平面向量模的計(jì)算公式,直接計(jì)算即可.【詳解】因?yàn)槠矫嫦蛄颗c的夾角為,所以,所以;故答案為【點(diǎn)睛】本題主要考查平面向量模的計(jì)算,只需先求出向量的數(shù)量積,進(jìn)而即可求出結(jié)果,屬于基礎(chǔ)題型.14.【解析】設(shè)根據(jù)橢圓的幾何性質(zhì)可得,根據(jù)雙曲線的幾何性質(zhì)可得,,即故答案為15.【解析】
設(shè)切點(diǎn)坐標(biāo)為,利用導(dǎo)數(shù)求出曲線在切點(diǎn)的切線方程,將原點(diǎn)代入切線方程,求出的值,于此可得出所求的切線方程.【詳解】設(shè)切點(diǎn)坐標(biāo)為,,,,則曲線在點(diǎn)處的切線方程為,由于該直線過原點(diǎn),則,得,因此,則過原點(diǎn)且與曲線相切的直線方程為,故答案為.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查過點(diǎn)作函數(shù)圖象的切線方程,求解思路是:(1)先設(shè)切點(diǎn)坐標(biāo),并利用導(dǎo)數(shù)求出切線方程;(2)將所過點(diǎn)的坐標(biāo)代入切線方程,求出參數(shù)的值,可得出切點(diǎn)的坐標(biāo);(3)將參數(shù)的值代入切線方程,可得出切線的方程.16.1【解析】
利用輔助角公式化簡可得,由題可分析的最小值等于表示相鄰的一個(gè)對(duì)稱中心與一個(gè)對(duì)稱軸的距離為,進(jìn)而求解即可.【詳解】由題,,因?yàn)?,且的最小值等于,即相鄰的一個(gè)對(duì)稱中心與一個(gè)對(duì)稱軸的距離為,所以,即,所以,故答案為:1【點(diǎn)睛】本題考查正弦型函數(shù)的對(duì)稱性的應(yīng)用,考查三角函數(shù)的化簡.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)12(2)【解析】
(1)根據(jù)焦距得焦點(diǎn)坐標(biāo),結(jié)合橢圓上的點(diǎn)的坐標(biāo),根據(jù)定義;(2)求出橢圓的標(biāo)準(zhǔn)方程,設(shè),聯(lián)立直線和橢圓,結(jié)合韋達(dá)定理表示出面積,即可求解最大值.【詳解】(1)設(shè)橢園的焦距為,則,故.則橢圓過點(diǎn),由橢圓定義知:,故,因此,的周長;(2)由(1)知:,橢圓方程為:設(shè),則,,,,,當(dāng)且僅當(dāng)在短軸頂點(diǎn)處取等,故面積的最大值為.【點(diǎn)睛】此題考查根據(jù)橢圓的焦點(diǎn)和橢圓上的點(diǎn)的坐標(biāo)求橢圓的標(biāo)準(zhǔn)方程,根據(jù)直線與橢圓的交點(diǎn)關(guān)系求三角形面積的最值,涉及韋達(dá)定理的使用,綜合性強(qiáng),計(jì)算量大.18.(1);(2)【解析】
(1)消去參數(shù),將圓的參數(shù)方程,轉(zhuǎn)化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標(biāo)方程.(2)利用圓的參數(shù)方程以及輔助角公式,由此求得的面積的表達(dá)式,再由三角函數(shù)最值的求法,求得三角形面積的最大值.【詳解】(1)由題意得:,:因?yàn)榍€和相切,所以,即:;(2)設(shè),所以所以當(dāng)時(shí),面積最大值為【點(diǎn)睛】本小題主要考查參數(shù)方程轉(zhuǎn)化為普通方程,考查直角坐標(biāo)方程轉(zhuǎn)化為極坐標(biāo)方程,考查利用參數(shù)的方法求三角形面積的最值,屬于中檔題.19.(1)①函數(shù)與的圖象在區(qū)間上有交點(diǎn);②證明見解析;(2)且;【解析】
(1)①令,結(jié)合函數(shù)零點(diǎn)的判定定理判斷即可;②設(shè)切點(diǎn)橫坐標(biāo)為,求出切線方程,得到,根據(jù)函數(shù)的單調(diào)性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,確定的范圍即可.【詳解】解:(1)①當(dāng)時(shí),函數(shù),令,,則,,故,又函數(shù)在區(qū)間上的圖象是不間斷曲線,故函數(shù)在區(qū)間上有零點(diǎn),故函數(shù)與的圖象在區(qū)間上有交點(diǎn);②證明:假設(shè)存在,使得直線是曲線的切線,切點(diǎn)橫坐標(biāo)為,且,則切線在點(diǎn)切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數(shù)在和上單調(diào)遞增,又函數(shù)在時(shí),故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當(dāng)時(shí),遞減,故當(dāng)時(shí),,遞增,當(dāng)時(shí),,遞減,故在處取得極大值,不合題意;時(shí),則在遞減,在,遞增,①當(dāng)時(shí),,故在遞減,可得當(dāng)時(shí),,當(dāng)時(shí),,,易證,令,,令,故,則,故在遞增,則,即時(shí),,故在,內(nèi)存在,使得,故在,上遞減,在,遞增,故在處取得極小值.②由(1)知,,故在遞減,在遞增,故時(shí),,遞增,不合題意;③當(dāng)時(shí),,當(dāng),時(shí),,遞減,當(dāng)時(shí),,遞增,故在處取極小值,符合題意,綜上,實(shí)數(shù)的范圍是且.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.20.(Ⅰ);(Ⅱ).【解析】試題分析:(1)根據(jù)零點(diǎn)分區(qū)間法,去掉絕對(duì)值解不等式;(2)根據(jù)絕對(duì)值不等式的性質(zhì)得,因此將問題轉(zhuǎn)化為恒成立,借此不等式即可.試題解析:(Ⅰ)由得,,或,或解得:所以原不等式的解集為.(Ⅱ)由不等式的性質(zhì)得:,要使不等式恒成立,則當(dāng)時(shí),不等式恒成立;當(dāng)時(shí),解不等式得.綜上.所以實(shí)數(shù)的取值范圍為.21.(1);(2).【解析】
(1)由角的度數(shù)成等差數(shù)列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以當(dāng),即時(shí),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024智慧城市交通信號(hào)控制系統(tǒng)優(yōu)化合同
- 2025年度橙子包裝設(shè)計(jì)與定制生產(chǎn)合同2篇
- 2025年度環(huán)保設(shè)備銷售與服務(wù)合同4篇
- 2024版人身損害賠償協(xié)議
- 二零二四年外墻清洗專業(yè)團(tuán)隊(duì)服務(wù)合同樣本3篇
- 2024-2025學(xué)年高中地理第一章環(huán)境與環(huán)境問題第一節(jié)我們周圍的環(huán)境課時(shí)分層作業(yè)含解析新人教版選修6
- 二零二五版城市綜合體土方運(yùn)輸與臨時(shí)堆場租賃合同3篇
- 二零二五年度餐飲業(yè)人力資源派遣合同范本3篇
- 2025年特色小鎮(zhèn)物業(yè)經(jīng)營權(quán)及配套設(shè)施合作合同3篇
- 二零二五版科技公司股份交易與稅收籌劃合同3篇
- 精神病院設(shè)置可行性方案
- WPF框架系列課程(小白進(jìn)階選擇)
- 小兒腸梗阻護(hù)理查房
- 小學(xué)音樂《編花籃》
- 污水處理站管理制度及操作規(guī)程
- 基于自適應(yīng)神經(jīng)網(wǎng)絡(luò)模糊推理系統(tǒng)的游客規(guī)模預(yù)測研究
- 河道保潔服務(wù)投標(biāo)方案(完整技術(shù)標(biāo))
- 品管圈(QCC)案例-縮短接臺(tái)手術(shù)送手術(shù)時(shí)間
- 精神科病程記錄
- 閱讀理解特訓(xùn)卷-英語四年級(jí)上冊(cè)譯林版三起含答案
- 清華大學(xué)考博英語歷年真題詳解
評(píng)論
0/150
提交評(píng)論