2022-2023學(xué)年遼寧省沈陽市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2022-2023學(xué)年遼寧省沈陽市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2022-2023學(xué)年遼寧省沈陽市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2022-2023學(xué)年遼寧省沈陽市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2022-2023學(xué)年遼寧省沈陽市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年遼寧省沈陽市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(50題)1.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-3

2.

3.

4.設(shè)等于()A.A.-1B.1C.-cos1D.1-cos1

5.

6.設(shè)y=2x3,則dy=()

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

7.A.A.sinx+sin2B.-sinx+sin2C.sinxD.-sinx

8.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

9.

A.

B.

C.

D.

10.A.A.0B.1/2C.1D.∞

11.

12.

13.

14.下列函數(shù)中,在x=0處可導(dǎo)的是()

A.y=|x|

B.

C.y=x3

D.y=lnx

15.已知斜齒輪上A點(diǎn)受到另一齒輪對它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。

A.圓周力FT=Fncosαcosβ

B.徑向力Fa=Fncosαcosβ

C.軸向力Fr=Fncosα

D.軸向力Fr=Fnsinα

16.A.A.

B.

C.

D.

17.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是

A.

B.f(x)=(x-4)2,x∈[-2,4]

C.

D.f(x)=|x|,x∈[-1,1]

18.

19.設(shè)直線,ι:x/0=y/2=z/1=z/1,則直線ιA.A.過原點(diǎn)且平行于x軸B.不過原點(diǎn)但平行于x軸C.過原點(diǎn)且垂直于x軸D.不過原點(diǎn)但垂直于x軸20.A.A.4B.-4C.2D.-2

21.

22.若函數(shù)f(x)=5x,則f'(x)=

A.5x-1

B.x5x-1

C.5xln5

D.5x

23.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.

B.

C.

D.

24.A.A.5B.3C.-3D.-525.()。A.

B.

C.

D.

26.為了提高混凝土的抗拉強(qiáng)度,可在梁中配置鋼筋。若矩形截面梁的彎矩圖如圖所示,梁中鋼筋(圖中虛線所示)配置最為合理的是()。

A.

B.

C.

D.

27.A.f(2x)

B.2f(x)

C.f(-2x)

D.-2f(x)

28.A.3B.2C.1D.1/229.設(shè)y1、y2是二階常系數(shù)線性齊次方程y"+p1y'+p2y=0的兩個(gè)特解,C1、C2為兩個(gè)任意常數(shù),則下列命題中正確的是A.A.C1y1+C2y2為該方程的通解

B.C1y1+C2y2不可能是該方程的通解

C.C1y1+C2y2為該方程的解

D.C1y1+C2y2不是該方程的解

30.

31.當(dāng)x→0時(shí),下列變量中為無窮小的是()。

A.lg|x|

B.

C.cotx

D.

32.設(shè)函數(shù)f(x)=2sinx,則f(x)等于().

A.2sinxB.2cosxC.-2sinxD.-2cosx33.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx

34.下列命題不正確的是()。

A.兩個(gè)無窮大量之和仍為無窮大量

B.上萬個(gè)無窮小量之和仍為無窮小量

C.兩個(gè)無窮大量之積仍為無窮大量

D.兩個(gè)有界變量之和仍為有界變量

35.設(shè)y=e-3x,則dy=A.e-3xdx

B.-e-3xdx

C.-3e-3xdx

D.3e-3xdx

36.當(dāng)x→0時(shí),2x+x2是x的A.A.等價(jià)無窮小B.較低階無窮小C.較高階無窮小D.同階但不等價(jià)的無窮小

37.

38.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-239.下列運(yùn)算中正確的有()A.A.

B.

C.

D.

40.

41.

42.

43.設(shè)區(qū)域,將二重積分在極坐標(biāo)系下化為二次積分為()A.A.

B.

C.

D.

44.設(shè)f(x)在點(diǎn)x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點(diǎn)x0必定可導(dǎo)B.f(x)在點(diǎn)x0必定不可導(dǎo)C.必定存在D.可能不存在45.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1

46.

A.單調(diào)增加且收斂B.單調(diào)減少且收斂C.收斂于零D.發(fā)散

47.

48.

49.A.A.導(dǎo)數(shù)存在,且有f(a)=一1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值

50.

二、填空題(20題)51.

52.

53.交換二重積分次序∫01dx∫x2xf(x,y)dy=________。

54.

55.微分方程y''+y=0的通解是______.

56.

57.

58.

59.設(shè)z=ln(x2+y),則全微分dz=__________。

60.61.

62.

63.過原點(diǎn)且與直線垂直的平面方程為______.

64.

65.66.67.∫(x2-1)dx=________。68.

69.設(shè)f(x)=xex,則f'(x)__________。

70.三、計(jì)算題(20題)71.

72.求微分方程的通解.73.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

74.

75.

76.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

77.證明:78.將f(x)=e-2X展開為x的冪級數(shù).79.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.80.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).81.

82.

83.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

84.求微分方程y"-4y'+4y=e-2x的通解.

85.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則86.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.87.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.88.89.求曲線在點(diǎn)(1,3)處的切線方程.90.四、解答題(10題)91.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

92.

93.

94.

95.

96.

97.

98.99.100.求曲線y=x2+1在點(diǎn)(1,2)處的切線方程.并求該曲線與所求切線及x=0所圍成的平面圖形的面積.五、高等數(shù)學(xué)(0題)101.已知函數(shù)

,則

=()。

A.1B.一1C.0D.不存在六、解答題(0題)102.

參考答案

1.C點(diǎn)(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為3,所以選C.

2.B

3.C

4.B本題考查的知識點(diǎn)為可變上限的積分.

由于,從而知

可知應(yīng)選B.

5.C

6.B

7.D

8.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

9.B

10.A

11.C

12.B

13.D

14.C選項(xiàng)A中,y=|x|,在x=0處有尖點(diǎn),即y=|x|在x=0處不可導(dǎo);選項(xiàng)B中,在x=0處不存在,即在x=0處不可導(dǎo);選項(xiàng)C中,y=x3,y'=3x2處處存在,即y=x3處處可導(dǎo),也就在x=0處可導(dǎo);選項(xiàng)D中,y=lnx,在x=0處不存在,y=lnx在x=0處不可導(dǎo)(事實(shí)上,在x=0點(diǎn)就沒定義).

15.C

16.A

17.C

18.A

19.C將原點(diǎn)(0,0,0)代入直線方程成等式,可知直線過原點(diǎn)(或由直線方程x/m=y/n=z/p表示過原點(diǎn)的直線得出上述結(jié)論)。直線的方向向量為(0,2,1),又與x軸同方向的單位向量為(1,0,0),且

(0,2,1)*(1,0,0)=0,

可知所給直線與x軸垂直,因此選C。

20.D

21.B

22.C本題考查了導(dǎo)數(shù)的基本公式的知識點(diǎn)。f'(x)=(5x)'=5xln5.

23.C

24.Cf(x)為分式,當(dāng)x=-3時(shí),分式的分母為零,f(x)沒有定義,因此

x=-3為f(x)的間斷點(diǎn),故選C。

25.C

26.D

27.A由可變上限積分求導(dǎo)公式可知因此選A.

28.B,可知應(yīng)選B。

29.C

30.C

31.D

32.B本題考查的知識點(diǎn)為導(dǎo)數(shù)的運(yùn)算.

f(x)=2sinx,

f(x)=2(sinx)≈2cosx.

可知應(yīng)選B.

33.A

34.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無窮大。

35.C

36.D

37.D

38.A由于

可知應(yīng)選A.

39.C本題考查的知識點(diǎn)為重要極限公式.

所給各極限與的形式相類似.注意到上述重要極限結(jié)構(gòu)形式為

將四個(gè)選項(xiàng)與其對照。可以知道應(yīng)該選C.

40.C

41.C

42.D

43.A本題考查的知識點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分.

由于在極坐標(biāo)系下積分區(qū)域D可以表示為

0≤θ≤π,0≤r≤a.

因此

故知應(yīng)選A.

44.C本題考查的知識點(diǎn)為極限、連續(xù)與可導(dǎo)性的關(guān)系.

函數(shù)f(x)在點(diǎn)x0可導(dǎo),則f(x)在點(diǎn)x0必連續(xù).

函數(shù)f(x)在點(diǎn)x0連續(xù),則必定存在.

函數(shù)f(x)在點(diǎn)x0連續(xù),f(x)在點(diǎn)x0不一定可導(dǎo).

函數(shù)f(x)在點(diǎn)x0不連續(xù),則f(x)在點(diǎn)x0必定不可導(dǎo).

這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.

45.B由導(dǎo)數(shù)的定義可知

可知,故應(yīng)選B。

46.C解析:

47.C解析:

48.D

49.A本題考查的知識點(diǎn)為導(dǎo)數(shù)的定義.

50.B

51.2

52.1/21/2解析:53.因?yàn)椤?1dx∫x2xf(x,y)dy,所以其區(qū)域如圖所示,所以先對x的積分為。

54.(2x-y)dx+(2y-x)dy(2x-y)dx+(2y-x)dy解析:55.y=C1cosx+C2sinx微分方程y''+y=0的特征方程是r2+1=0,故特征根為r=±i,所以方程的通解為y=C1cosx+C2sinx.

56.+∞(發(fā)散)+∞(發(fā)散)

57.

58.

59.

60.0

61.

本題考查的知識點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.

本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.

本題中常見的錯(cuò)誤有

這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為-個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即

請考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.

62.(-24)(-2,4)解析:63.2x+y-3z=0本題考查的知識點(diǎn)為平面方程和平面與直線的關(guān)系.

由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=0

64.

65.(-21)(-2,1)

66.本題考查的知識點(diǎn)為微分的四則運(yùn)算.

注意若u,v可微,則

67.

68.1本題考查了無窮積分的知識點(diǎn)。

69.(1+x)ex70.±1.

本題考查的知識點(diǎn)為判定函數(shù)的間斷點(diǎn).

71.

72.73.函數(shù)的定義域?yàn)?/p>

注意

74.

75.

76.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

77.

78.

79.

80.

列表:

說明

81.由一階線性微分方程通解公式有

82.

83.

84.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

85.由等價(jià)無窮小量的定義可知86.由二重積分物理意義知

87.

88.89.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論