2022-2023學(xué)年甘肅省定西市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第1頁
2022-2023學(xué)年甘肅省定西市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第2頁
2022-2023學(xué)年甘肅省定西市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第3頁
2022-2023學(xué)年甘肅省定西市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第4頁
2022-2023學(xué)年甘肅省定西市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年甘肅省定西市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合

2.A.A.1B.2C.3D.4

3.A.A.0B.1C.2D.不存在

4.

5.

6.A.-cosxB.-ycosxC.cosxD.ycosx

7.A.I1=I2

B.I1>I2

C.I1<I2

D.無法比較

8.

9.

10.

11.

12.設(shè)函數(shù)f(x)=(1+x)ex,則函數(shù)f(x)()。

A.有極小值B.有極大值C.既有極小值又有極大值D.無極值

13.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x

14.A.0或1B.0或-1C.0或2D.1或-1

15.

16.

17.某技術(shù)專家,原來從事專業(yè)工作,業(yè)務(wù)精湛,績效顯著,近來被提拔到所在科室負(fù)責(zé)人的崗位。隨著工作性質(zhì)的轉(zhuǎn)變,他今后應(yīng)當(dāng)注意把自己的工作重點調(diào)整到()

A.放棄技術(shù)工作,全力以赴,抓好管理和領(lǐng)導(dǎo)工作

B.重點仍以技術(shù)工作為主,以自身為榜樣帶動下級

C.以抓管理工作為主,同時參與部分技術(shù)工作,以增強(qiáng)與下級的溝通和了解

D.在抓好技術(shù)工作的同時,做好管理工作

18.

19.

20.

二、填空題(20題)21.

22.

23.

24.

25.

26.

27.

28.設(shè)y=y(x)是由方程y+ey=x所確定的隱函數(shù),則y'=_________.

29.30.

31.

則F(O)=_________.

32.極限=________。

33.

34.交換二重積分次序∫01dx∫x2xf(x,y)dy=________。

35.

36.

37.38.微分方程xy'=1的通解是_________。39.設(shè)f(x)=esinx,則=________。

40.

三、計算題(20題)41.求微分方程y"-4y'+4y=e-2x的通解.

42.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.43.將f(x)=e-2X展開為x的冪級數(shù).

44.

45.

46.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

47.證明:48.

49.50.51.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則52.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

53.54.求曲線在點(1,3)處的切線方程.55.求微分方程的通解.56.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.57.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.58.

59.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.60.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)61.求曲線y=x2+1在點(1,2)處的切線方程.并求該曲線與所求切線及x=0所圍成的平面圖形的面積.62.求,其中D為y=x-4,y2=2x所圍成的區(qū)域。63.計算二重積分

,其中D是由直線

及y=1圍

成的平面區(qū)域.

64.65.計算

66.

67.研究y=3x4-8x3+6x2+5的增減性、極值、極值點、曲線y=f(x)的凹凸區(qū)間與拐點.

68.

69.求曲線y=在點(1,1)處的切線方程.70.五、高等數(shù)學(xué)(0題)71.設(shè)z=exy,則dz|(1,1)(1.1)=___________。

六、解答題(0題)72.

參考答案

1.A本題考查的知識點為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時,兩平面平行;

當(dāng)時,兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。

2.A

3.C本題考查的知識點為左極限、右極限與極限的關(guān)系.

4.C

5.D

6.C本題考查的知識點為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。

7.C因積分區(qū)域D是以點(2,1)為圓心的一單位圓,且它位于直線x+y=1的上方,即在D內(nèi)恒有x+y>1,所以(x+y)2<(x+y)3.所以有I1<I2.

8.C

9.B解析:

10.C

11.B

12.A因f(x)=(1+x)ex且處處可導(dǎo),于是,f'(x)=ex+(1+x)·ex=(x+2)ex,令f'(x)=0得駐點x=-2;又x<-2時,f'(x)<0;x>-2時,f'(x)>0;從而f(x)在i=-2處取得極小值,且f(x)只有一個極值.

13.D

14.A

15.D

16.D

17.C

18.D解析:

19.B解析:

20.D21.由可變上限積分求導(dǎo)公式可知

22.

23.

24.1/61/6解析:

25.

26.

解析:

27.e-2

28.1/(1+ey)本題考查了隱函數(shù)的求導(dǎo)的知識點。

29.

30.

31.32.因為所求極限中的x的變化趨勢是趨近于無窮,因此它不是重要極限的形式,由于=0,即當(dāng)x→∞時,為無窮小量,而cosx-1為有界函數(shù),利用無窮小量性質(zhì)知

33.234.因為∫01dx∫x2xf(x,y)dy,所以其區(qū)域如圖所示,所以先對x的積分為。

35.

36.

37.

38.y=lnx+C39.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。

40.e2

41.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

42.

43.

44.

45.

46.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%

47.

48.

49.

50.

51.由等價無窮小量的定義可知

52.

53.

54.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

55.

56.

57.函數(shù)的定義域為

注意

58.由一階線性微分方程通解公式有

59.

列表:

說明

60.由二重積分物理意義知

61.本題考查的知識點為:求曲線的切線方程;利用定積分求平面圖形的面積.

Y-2=2(x-1),

y=2x.

曲線y=x2+1,切線y=2x與x=0所圍成的平面圖形如圖3—1所示.

其面積

62.63.所給積分區(qū)域D如圖5-6所示,如果選擇先對y積分后對x積分的二次積分,需要

將積分區(qū)域劃分為幾個子區(qū)域,如果選擇先對x積分后對y積分的二次積分,區(qū)域D可以表示為

0≤y≤1,Y≤x≤y+1,

因此

【評析】

上述分析通常又是選擇積分次序問題的常見方法.

64.

65.本題考查的知識點為不定積分的換元積分運算.

66.

67.本題考查的知識點為導(dǎo)數(shù)的應(yīng)用.

這個題目包含了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性;

求函數(shù)的極值與極值點;

求曲線的凹凸區(qū)間與拐點.

68.69.由于

所以

因此曲線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論