版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若將函數(shù)的圖象上各點橫坐標縮短到原來的(縱坐標不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)在上單調(diào)遞增 B.函數(shù)的周期是C.函數(shù)的圖象關于點對稱 D.函數(shù)在上最大值是12.A. B. C. D.3.已知數(shù)列的前項和為,且,,則()A. B. C. D.4.某中學2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對比該??忌纳龑W情況,統(tǒng)計了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結(jié)論正確的是().A.與2016年相比,2019年不上線的人數(shù)有所增加B.與2016年相比,2019年一本達線人數(shù)減少C.與2016年相比,2019年二本達線人數(shù)增加了0.3倍D.2016年與2019年藝體達線人數(shù)相同5.已知集合A,則集合()A. B. C. D.6.已知數(shù)列滿足,(),則數(shù)列的通項公式()A. B. C. D.7.已知雙曲線的左、右焦點分別為、,拋物線與雙曲線有相同的焦點.設為拋物線與雙曲線的一個交點,且,則雙曲線的離心率為()A.或 B.或 C.或 D.或8.已知數(shù)列的前n項和為,,且對于任意,滿足,則()A. B. C. D.9.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件10.設復數(shù)滿足,則在復平面內(nèi)的對應點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.如圖在直角坐標系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機選取一點,則它在陰影部分的概率為()A. B. C. D.12.若,則下列不等式不能成立的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.連續(xù)擲兩次骰子,分別得到的點數(shù)作為點的坐標,則點落在圓內(nèi)的概率為______________.14.如圖,在一個倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個半徑為1的不銹鋼制的實心半球后,半球的大圓面、水面均與容器口相平,則的值為____________.15.在的二項展開式中,所有項的二項式系數(shù)之和為256,則_______,項的系數(shù)等于________.16.已知實數(shù)滿足(為虛數(shù)單位),則的值為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且過點.(1)求橢圓C的標準方程;(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設O為坐標原點,試判斷以OD為直徑的圓與點M的位置關系.18.(12分)如圖,在三棱柱中,平面平面,側(cè)面為平行四邊形,側(cè)面為正方形,,,為的中點.(1)求證:平面;(2)求二面角的大小.19.(12分)如圖,在直三棱柱中,,點分別為和的中點.(Ⅰ)棱上是否存在點使得平面平面?若存在,寫出的長并證明你的結(jié)論;若不存在,請說明理由.(Ⅱ)求二面角的余弦值.20.(12分)4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動.學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調(diào)查.各組人數(shù)統(tǒng)計如下:小組甲乙丙丁人數(shù)12969(1)從參加問卷調(diào)查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數(shù),求隨機變量的分布列和數(shù)學期望.21.(12分)已知函數(shù)f(x)=ex-x2-kx(其中e為自然對數(shù)的底,k為常數(shù))有一個極大值點和一個極小值點.(1)求實數(shù)k的取值范圍;(2)證明:f(x)的極大值不小于1.22.(10分)已知函數(shù),.(1)當為何值時,軸為曲線的切線;(2)用表示、中的最大值,設函數(shù),當時,討論零點的個數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據(jù)三角函數(shù)伸縮變換特點可得到解析式;利用整體對應的方式可判斷出在上單調(diào)遞增,正確;關于點對稱,錯誤;根據(jù)正弦型函數(shù)最小正周期的求解可知錯誤;根據(jù)正弦型函數(shù)在區(qū)間內(nèi)值域的求解可判斷出最大值無法取得,錯誤.【詳解】將橫坐標縮短到原來的得:當時,在上單調(diào)遞增在上單調(diào)遞增,正確;的最小正周期為:不是的周期,錯誤;當時,,關于點對稱,錯誤;當時,此時沒有最大值,錯誤.本題正確選項:【點睛】本題考查正弦型函數(shù)的性質(zhì),涉及到三角函數(shù)的伸縮變換、正弦型函數(shù)周期性、單調(diào)性和對稱性、正弦型函數(shù)在一段區(qū)間內(nèi)的值域的求解;關鍵是能夠靈活應用整體對應的方式,通過正弦函數(shù)的圖象來判斷出所求函數(shù)的性質(zhì).2.A【解析】
直接利用復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】本題正確選項:【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,是基礎的計算題.3.C【解析】
根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,求得其通項公式,由此求得.【詳解】由于,所以數(shù)列是等比數(shù)列,其首項為,第二項為,所以公比為.所以,所以.故選:C【點睛】本小題主要考查等比數(shù)列的證明,考查等比數(shù)列通項公式,屬于基礎題.4.A【解析】
設2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,通過簡單的計算逐一驗證選項A、B、C、D.【詳解】設2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,2016年高考不上線人數(shù)為,2019年不上線人數(shù)為,故A正確;2016年高考一本人數(shù),2019年高考一本人數(shù),故B錯誤;2019年二本達線人數(shù),2016年二本達線人數(shù),增加了倍,故C錯誤;2016年藝體達線人數(shù),2019年藝體達線人數(shù),故D錯誤.故選:A.【點睛】本題考查柱狀圖的應用,考查學生識圖的能力,是一道較為簡單的統(tǒng)計類的題目.5.A【解析】
化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎題.6.A【解析】
利用數(shù)列的遞推關系式,通過累加法求解即可.【詳解】數(shù)列滿足:,,可得以上各式相加可得:,故選:.【點睛】本題考查數(shù)列的遞推關系式的應用,數(shù)列累加法以及通項公式的求法,考查計算能力.7.D【解析】
設,,根據(jù)和拋物線性質(zhì)得出,再根據(jù)雙曲線性質(zhì)得出,,最后根據(jù)余弦定理列方程得出、間的關系,從而可得出離心率.【詳解】過分別向軸和拋物線的準線作垂線,垂足分別為、,不妨設,,則,為雙曲線上的點,則,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故選:D.【點睛】本題考查了雙曲線離心率的求解,涉及雙曲線和拋物線的簡單性質(zhì),考查運算求解能力,屬于中檔題.8.D【解析】
利用數(shù)列的遞推關系式判斷求解數(shù)列的通項公式,然后求解數(shù)列的和,判斷選項的正誤即可.【詳解】當時,.所以數(shù)列從第2項起為等差數(shù)列,,所以,,.,,.故選:.【點睛】本題考查數(shù)列的遞推關系式的應用、數(shù)列求和以及數(shù)列的通項公式的求法,考查轉(zhuǎn)化思想以及計算能力,是中檔題.9.B【解析】
構(gòu)造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個面中根據(jù)題意恰當?shù)倪x取直線為m,n即可進行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令AD1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內(nèi)的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點睛】本題考點有兩個:①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進行判斷;②是空間的垂直關系,一般利用長方體為載體進行分析.10.C【解析】
化簡得到,得到答案.【詳解】,故,對應點在第三象限.故選:.【點睛】本題考查了復數(shù)的化簡和對應象限,意在考查學生的計算能力.11.A【解析】
設所求切線的方程為,聯(lián)立,消去得出關于的方程,可得出,求出的值,進而求得切點的坐標,利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點,所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點睛】本題考查定積分的計算以及幾何概型,同時也涉及了二次函數(shù)的切線方程的求解,考查計算能力,屬于中等題.12.B【解析】
根據(jù)不等式的性質(zhì)對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【點睛】本題考查不等關系和不等式,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
連續(xù)擲兩次骰子共有種結(jié)果,列出滿足條件的結(jié)果有11種,利用古典概型即得解【詳解】由題意知,連續(xù)擲兩次骰子共有種結(jié)果,而滿足條件的結(jié)果為:共有11種結(jié)果,根據(jù)古典概型概率公式,可得所求概率.故答案為:【點睛】本題考查了古典概型的應用,考查了學生綜合分析,數(shù)學運算的能力,屬于基礎題.14.【解析】
由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,,解得,所以,,,由,得,解得.故答案為:【點睛】本題考查圓錐的體積、球的體積的計算,考查學生空間想象能力與計算能力,是一道中檔題.15.81【解析】
根據(jù)二項式系數(shù)和的性質(zhì)可得n,再利用展開式的通項公式求含項的系數(shù)即可.【詳解】由于所有項的二項式系數(shù)之和為,,故的二項展開式的通項公式為,令,求得,可得含x項的系數(shù)等于,故答案為:8;1.【點睛】本題主要考查二項式定理的應用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,屬于中檔題.16.【解析】
由虛數(shù)單位的性質(zhì)結(jié)合復數(shù)相等的條件列式求得,的值,則答案可求.【詳解】解:由,,,所以,得,..故答案為:.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查虛數(shù)單位的性質(zhì),屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)點在以為直徑的圓上【解析】
(1)根據(jù)題意列出關于,,的方程組,解出,,的值,即可得到橢圓的標準方程;(2)設點,,則,,求出直線的方程,進而求出點的坐標,再利用中點坐標公式得到點的坐標,下面結(jié)合點在橢圓上證出,所以點在以為直徑的圓上.【詳解】(1)由題意可知,,解得,橢圓的標準方程為:.(2)設點,,則,,直線的斜率為,直線的方程為:,令得,,點的坐標為,,點的坐標為,,,,又點,在橢圓上,,,,點在以為直徑的圓上.【點睛】本題主要考查了橢圓方程,考查了中點坐標公式,以及平面向量的基本知識,屬于中檔題.18.(1)證明見解析(2)【解析】
(1)連接,交與,連接,由,得出結(jié)論;(2)以為原點,,,分別為,,軸建立空間直角坐標系,求出平面的法向量,利用夾角公式求出即可.【詳解】(1)連接,交與,連接,在中,,又平面,平面,所以平面;(2)由平面平面,,為平面與平面的交線,故平面,故,又,所以平面,以為原點,,,分別為,,軸建立空間直角坐標系,,,,,,,設平面的法向量為,,,由,得,平面的法向量為,由,故二面角的大小為.【點睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19.(Ⅰ)存在點滿足題意,且,證明詳見解析;(Ⅱ).【解析】
(Ⅰ)可考慮采用補形法,取的中點為,連接,可結(jié)合等腰三角形性質(zhì)和線面垂直性質(zhì),先證平面,即,若能證明,則可得證,可通過我們反推出點對應位置應在處,進而得證;(Ⅱ)采用建系法,以為坐標原點,以分別為軸建立空間直角坐標系,分別求出兩平面對應法向量,再結(jié)合向量夾角公式即可求解;【詳解】(Ⅰ)存在點滿足題意,且.證明如下:取的中點為,連接.則,所以平面.因為是的中點,所以.在直三棱柱中,平面平面,且交線為,所以平面,所以.在平面內(nèi),,,所以,從而可得.又因為,所以平面.因為平面,所以平面平面.(Ⅱ)如圖所示,以為坐標原點,以分別為軸建立空間直角坐標系.易知,,,,所以,,.設平面的法向量為,則有取,得.同理可求得平面的法向量為.則.由圖可知二面角為銳角,所以其余弦值為.【點睛】本題考查面面垂直的判定定理、向量法求二面角的余弦值,屬于中檔題20.(1)(2)見解析,【解析】
(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問卷調(diào)查的12名學生中隨機抽取2人,基本事件總數(shù)為,這兩人來自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,而甲、丙兩個小組學生分別有4人和2人,所以抽取的兩人中是甲組的學生的人數(shù)的可能取值為0,1,2,分別求出相應的概率,由此能求出隨機變量的分布列和數(shù)學期望.【詳解】(1)由題設易得,問卷調(diào)查從四個小組中抽取的人數(shù)分別為4,3,2,3(人),從參加問卷調(diào)查的12名學生中隨機抽取兩名的取法共有(種),抽取的兩名學生來自同一小組的取法共有(種),所以,抽取的兩名學生來自同一個小組的概率為(2)由(1)知,在參加問卷調(diào)查的12名學生中,來自甲、丙兩小組的學生人數(shù)分別為4人、2人,所以,抽取的兩人中是甲組的學生的人數(shù)的可能取值為0,1,2,因為所以隨機變量的分布列為:012所求的期望為【點睛】此題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,考查分層抽樣、古典概型、排列組合等知識,考查運算能力,屬于中檔題.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人山林承包權租賃合同范本2篇
- 軟件開發(fā)微信公眾號內(nèi)容運營協(xié)議范文
- 2025版委托市場營銷與授權合同3篇
- 汽車維修服務合同協(xié)議書(專業(yè)維修)
- 智能能源供應站合作協(xié)議
- 農(nóng)產(chǎn)品采購供應合作協(xié)議
- 相機租賃合同
- 2024年醫(yī)療健康產(chǎn)業(yè)項目合作協(xié)議
- 共享經(jīng)濟模式下的產(chǎn)業(yè)融合合作協(xié)議
- 高端房產(chǎn)交易細節(jié)確認及免責協(xié)議
- 華中師范大學第一附中2025屆高考仿真模擬數(shù)學試卷含解析
- 農(nóng)村自建房施工合同模板
- GB/T 44731-2024科技成果評估規(guī)范
- 影視動畫設計與制作合同
- 2023學年廣東省深圳實驗學校初中部九年級(下)開學語文試卷
- 企業(yè)新員工培訓師帶徒方案
- 2025屆河南省鄭州一中高三物理第一學期期末學業(yè)水平測試試題含解析
- 美容美發(fā)行業(yè)衛(wèi)生管理規(guī)范
- 個體工商戶章程(標準版)
- 河南省安陽市2024年中考一模語文試卷(含答案)
- 廢舊物資買賣合同極簡版
評論
0/150
提交評論