2022年江蘇省揚州市江都區(qū)大橋、丁溝、仙城中學(xué)高三壓軸卷數(shù)學(xué)試卷含解析_第1頁
2022年江蘇省揚州市江都區(qū)大橋、丁溝、仙城中學(xué)高三壓軸卷數(shù)學(xué)試卷含解析_第2頁
2022年江蘇省揚州市江都區(qū)大橋、丁溝、仙城中學(xué)高三壓軸卷數(shù)學(xué)試卷含解析_第3頁
2022年江蘇省揚州市江都區(qū)大橋、丁溝、仙城中學(xué)高三壓軸卷數(shù)學(xué)試卷含解析_第4頁
2022年江蘇省揚州市江都區(qū)大橋、丁溝、仙城中學(xué)高三壓軸卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]2.等比數(shù)列中,,則與的等比中項是()A.±4 B.4 C. D.3.設(shè)全集U=R,集合,則()A. B. C. D.4.己知函數(shù)的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.5.設(shè)全集,集合,,則()A. B. C. D.6.若復(fù)數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.47.如圖,在中,,是上一點,若,則實數(shù)的值為()A. B. C. D.8.設(shè),,分別是中,,所對邊的邊長,則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直9.已知集合,集合,則()A. B. C. D.10.“完全數(shù)”是一些特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學(xué)家畢達哥拉斯公元前六世紀(jì)發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進一步研究發(fā)現(xiàn)后續(xù)三個完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28不在同一組的概率為()A. B. C. D.11.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.12.單位正方體ABCD-,黑、白兩螞蟻從點A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.0二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列與均為等差數(shù)列(),且,則______.14.若滿足,則目標(biāo)函數(shù)的最大值為______.15.在正奇數(shù)非減數(shù)列中,每個正奇數(shù)出現(xiàn)次.已知存在整數(shù)、、,對所有的整數(shù)滿足,其中表示不超過的最大整數(shù).則等于______.16.若、滿足約束條件,則的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點P在拋物線上,且點P的橫坐標(biāo)為2,以P為圓心,為半徑的圓(O為原點),與拋物線C的準(zhǔn)線交于M,N兩點,且.(1)求拋物線C的方程;(2)若拋物線的準(zhǔn)線與y軸的交點為H.過拋物線焦點F的直線l與拋物線C交于A,B,且,求的值.18.(12分)在平面直角坐標(biāo)系xOy中,拋物線C:,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為().(1)求拋物線C的極坐標(biāo)方程;(2)若拋物線C與直線l交于A,B兩點,求的值.19.(12分)已知分別是的內(nèi)角的對邊,且.(Ⅰ)求.(Ⅱ)若,,求的面積.(Ⅲ)在(Ⅱ)的條件下,求的值.20.(12分)如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形,在上,且面.(1)求證:是的中點;(2)在上是否存在點,使二面角為直角?若存在,求出的值;若不存在,說明理由.21.(12分)已知函數(shù)的最大值為2.(Ⅰ)求函數(shù)在上的單調(diào)遞減區(qū)間;(Ⅱ)中,,角所對的邊分別是,且,求的面積.22.(10分)已知拋物線的頂點為原點,其焦點關(guān)于直線的對稱點為,且.若點為的準(zhǔn)線上的任意一點,過點作的兩條切線,其中為切點.(1)求拋物線的方程;(2)求證:直線恒過定點,并求面積的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

設(shè),可得,構(gòu)造()22,結(jié)合,可得,根據(jù)向量減法的模長不等式可得解.【詳解】設(shè),則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.【點睛】本題考查了向量的運算綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.2.A【解析】

利用等比數(shù)列的性質(zhì)可得,即可得出.【詳解】設(shè)與的等比中項是.

由等比數(shù)列的性質(zhì)可得,.

∴與的等比中項

故選A.【點睛】本題考查了等比中項的求法,屬于基礎(chǔ)題.3.A【解析】

求出集合M和集合N,,利用集合交集補集的定義進行計算即可.【詳解】,,則,故選:A.【點睛】本題考查集合的交集和補集的運算,考查指數(shù)不等式和二次不等式的解法,屬于基礎(chǔ)題.4.A【解析】

先將函數(shù)解析式化簡為,結(jié)合題意可求得切點及其范圍,根據(jù)導(dǎo)數(shù)幾何意義,即可求得的值.【詳解】函數(shù)即直線與函數(shù)圖象恰有四個公共點,結(jié)合圖象知直線與函數(shù)相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數(shù)的圖像與性質(zhì)的綜合應(yīng)用,由交點及導(dǎo)數(shù)的幾何意義求函數(shù)值,屬于難題.5.B【解析】

可解出集合,然后進行補集、交集的運算即可.【詳解】,,則,因此,.故選:B.【點睛】本題考查補集和交集的運算,涉及一元二次不等式的求解,考查運算求解能力,屬于基礎(chǔ)題.6.B【解析】

根據(jù)復(fù)數(shù)的幾何意義可知復(fù)數(shù)對應(yīng)的點在以原點為圓心,1為半徑的圓上,再根據(jù)復(fù)數(shù)的幾何意義即可確定,即可得的最大值.【詳解】由知,復(fù)數(shù)對應(yīng)的點在以原點為圓心,1為半徑的圓上,表示復(fù)數(shù)對應(yīng)的點與點間的距離,又復(fù)數(shù)對應(yīng)的點所在圓的圓心到的距離為1,所以.故選:B【點睛】本題考查了復(fù)數(shù)模的定義及其幾何意義應(yīng)用,屬于基礎(chǔ)題.7.C【解析】

由題意,可根據(jù)向量運算法則得到(1﹣m),從而由向量分解的唯一性得出關(guān)于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關(guān)鍵,本題屬于基礎(chǔ)題.8.C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點:直線與直線的位置關(guān)系9.C【解析】

求出集合的等價條件,利用交集的定義進行求解即可.【詳解】解:∵,,∴,故選:C.【點睛】本題主要考查了對數(shù)的定義域與指數(shù)不等式的求解以及集合的基本運算,屬于基礎(chǔ)題.10.C【解析】

先求出五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個數(shù),根據(jù)即可求出6和28不在同一組的概率.【詳解】解:根據(jù)題意,將五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個數(shù),∴6和28不在同一組的概率.故選:C.【點睛】本題考查古典概型的概率的求法,涉及實際問題中組合數(shù)的應(yīng)用.11.B【解析】

先判斷命題的真假,進而根據(jù)復(fù)合命題真假的真值表,即可得答案.【詳解】,,因為,,所以,所以,即命題p為真命題;畫出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.【點睛】本題考查真假命題的概念,以及真值表的應(yīng)用,解題的關(guān)鍵是判斷出命題的真假,難度較易.12.B【解析】

根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過幾段后又回到起點,得到每爬1步回到起點,周期為1.計算黑螞蟻爬完2020段后實質(zhì)是到達哪個點以及計算白螞蟻爬完2020段后實質(zhì)是到達哪個點,即可計算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點,可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點;同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點,所以它們此時的距離為.故選B.【點睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.20【解析】

設(shè)等差數(shù)列的公差為,由數(shù)列為等差數(shù)列,且,根據(jù)等差中項的性質(zhì)可得,,解方程求出公差,代入等差數(shù)列的通項公式即可求解.【詳解】設(shè)等差數(shù)列的公差為,由數(shù)列為等差數(shù)列知,,因為,所以,解得,所以數(shù)列的通項公式為,所以.故答案為:【點睛】本題考查等差數(shù)列的概念及其通項公式和等差中項;考查運算求解能力;等差中項的運用是求解本題的關(guān)鍵;屬于基礎(chǔ)題.14.-1【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖,化目標(biāo)函數(shù)為,由圖可得,當(dāng)直線過點時,直線在軸上的截距最大,由得即,則有最大值,故答案為.【點睛】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.15.2【解析】

將已知數(shù)列分組為(1),,共個組.設(shè)在第組,,則有,即.注意到,解得.所以,.因此,.故.16.【解析】

作出不等式組所表示的可行域,利用平移直線的方法找出使得目標(biāo)函數(shù)取得最小時對應(yīng)的最優(yōu)解,代入目標(biāo)函數(shù)計算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點,平移直線,當(dāng)直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案為:.【點睛】本題考查簡單的線性規(guī)劃問題,考查線性目標(biāo)函數(shù)的最值問題,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)4【解析】

(1)將點P橫坐標(biāo)代入拋物線中求得點P的坐標(biāo),利用點P到準(zhǔn)線的距離d和勾股定理列方程求出p的值即可;(2)設(shè)A、B點坐標(biāo)以及直線AB的方程,代入拋物線方程,利用根與系數(shù)的關(guān)系,以及垂直關(guān)系,得出關(guān)系式,計算的值即可.【詳解】(1)將點P橫坐標(biāo)代入中,求得,∴P(2,),,點P到準(zhǔn)線的距離為,∴,∴,解得,∴,∴拋物線C的方程為:;(2)拋物線的焦點為F(0,1),準(zhǔn)線方程為,;設(shè),直線AB的方程為,代入拋物線方程可得,∴,…①由,可得,又,,∴,∴,即,∴,…②把①代入②得,,則.【點睛】本題考查直線與拋物線的位置關(guān)系,以及拋物線與圓的方程應(yīng)用問題,考查轉(zhuǎn)化思想以及計算能力,是中檔題.18.(1)(2)【解析】

(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,,即可求得結(jié)果.(2)由的幾何意義得,.將代入拋物線C的方程,利用韋達定理,,即可求得結(jié)果.【詳解】(1)因為,,代入得,所以拋物線C的極坐標(biāo)方程為.(2)將代入拋物線C的方程得,所以,,所以,由的幾何意義得,.【點睛】本題考查直角坐標(biāo)和極坐標(biāo)的轉(zhuǎn)化,考查極坐標(biāo)方程的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運算的能力,難度一般.19.(Ⅰ);(Ⅱ);(Ⅲ).【解析】

(Ⅰ)由已知結(jié)合正弦定理先進行代換,然后結(jié)合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后結(jié)合三角形的面積公式可求;(Ⅲ)結(jié)合二倍角公式及和角余弦公式即可求解.【詳解】(Ⅰ)因為,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因為,所以;(Ⅲ)由于,.所以.【點睛】本題主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面積公式的綜合應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.20.(1)見解析;(2).【解析】試題分析:(1)連交于可得是中點,再根據(jù)面可得進而根據(jù)中位線定理可得結(jié)果;(2)取中點,由(1)知兩兩垂直.以為原點,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,求出面的一個法向量,用表示面的一個法向量,由可得結(jié)果.試題解析:(1)證明:連交于,連是矩形,是中點.又面,且是面與面的交線,是的中點.(2)取中點,由(1)知兩兩垂直.以為原點,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系(如圖),則各點坐標(biāo)為.設(shè)存在滿足要求,且,則由得:,面的一個法向量為,面的一個法向量為,由,得,解得,故存在,使二面角為直角,此時.21.(Ⅰ)(Ⅱ)【解析】

(1)由題意,f(x)的最大值為所以而m>0,于是m=,f(x)=2sin(x+).由正弦函數(shù)的單調(diào)性可得x滿足即所以f(x)在[0,π]上的單調(diào)遞減區(qū)間為(2)設(shè)△ABC的外接圓半徑為R,由題意,得化簡得sinA+sinB=2sinAsinB.由正弦定理,得①由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9=0②將①式代入②,得2(ab)2-3ab-9=0,解得ab=3或(舍去),故22.(1)(2)見解析,最小值為4【解析】

(1)根據(jù)焦點到直線的距離列方程,求得的值,由此求得拋物線的方程.(2)設(shè)出的坐標(biāo),利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論