版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年河北省滄州市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.設(shè)f'(x0)=0,f"(x0)<0,則下列結(jié)論必定正確的是().A.A.x0為f(x)的極大值點
B.x0為f(x)的極小值點
C.x0不為f(x)的極值點
D.x0可能不為f(x)的極值點
3.A.
B.
C.
D.
4.A.A.2
B.1
C.1/2e
D.
5.
6.
7.設(shè)f(x)為連續(xù)函數(shù),則(∫f5x)dx)'等于()A.A.
B.5f(x)
C.f(5x)
D.5f(5x)
8.
9.下列結(jié)論正確的有A.若xo是f(x)的極值點,則x0一定是f(x)的駐點
B.若xo是f(x)的極值點,且f’(x0)存在,則f’(x)=0
C.若xo是f(x)的駐點,則x0一定是f(xo)的極值點
D.若f(xo),f(x2)分別是f(x)在(a,b)內(nèi)的極小值與極大值,則必有f(x1)<f(x2)
10.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
11.微分方程y'+y=0的通解為y=A.e-x+C
B.-e-x+C
C.Ce-x
D.Cex
12.
13.
14.設(shè)函數(shù)f(x)在點x0。處連續(xù),則下列結(jié)論正確的是().A.A.
B.
C.
D.
15.A.A.1
B.1/m2
C.m
D.m2
16.
17.
18.
19.當x→0時,x是ln(1+x2)的
A.高階無窮小B.同階但不等價無窮小C.等價無窮小D.低階無窮小20.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合二、填空題(20題)21.22.23.24.過點M0(1,-2,0)且與直線垂直的平面方程為______.
25.
則F(O)=_________.
26.27.28.
29.微分方程dy+xdx=0的通解為y=__________.
30.
31.
32.
33.
34.35.設(shè)y=1nx,則y'=__________.
36.
37.
38.
39.40.三、計算題(20題)41.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
42.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
43.
44.45.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.46.求曲線在點(1,3)處的切線方程.
47.
48.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
49.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.50.將f(x)=e-2X展開為x的冪級數(shù).
51.求微分方程y"-4y'+4y=e-2x的通解.
52.53.54.求微分方程的通解.55.
56.證明:57.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.58.當x一0時f(x)與sin2x是等價無窮小量,則
59.
60.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.四、解答題(10題)61.
62.求由曲線y=2x-x2,y=x所圍成的平面圖形的面積S.并求此平面圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx.63.64.65.66.67.
確定a,b使得f(x)在x=0可導(dǎo)。
68.
69.計算,其中D為曲線y=x,y=1,x=0圍成的平面區(qū)域.70.五、高等數(shù)學(xué)(0題)71.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無關(guān)條件六、解答題(0題)72.
參考答案
1.D
2.A本題考查的知識點為函數(shù)極值的第二充分條件.
由極值的第二充分條件可知應(yīng)選A.
3.C據(jù)右端的二次積分可得積分區(qū)域D為選項中顯然沒有這個結(jié)果,于是須將該區(qū)域D用另一種不等式(X-型)表示.故D又可表示為
4.B
5.D
6.C
7.C本題考查的知識點為不定積分的性質(zhì).
(∫f5x)dx)'為將f(5x)先對x積分,后對x求導(dǎo).若設(shè)g(x)=f(5x),則(∫f5x)dx)'=(∫g(x)dx)'表示先將g(x)對x積分,后對x求導(dǎo),因此(∫f(5x)dx)'=(∫g(x)dx)'=g(x)=f(5x).
可知應(yīng)選C.
8.C
9.B
10.B
11.C
12.A解析:
13.B
14.D本題考查的知識點為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系.由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項D正確,C不正確.由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確.
15.D本題考查的知識點為重要極限公式或等價無窮小代換.
解法1由可知
解法2當x→0時,sinx~x,sinmx~mx,因此
16.A解析:
17.B
18.A
19.D解析:
20.A本題考查的知識點為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時,兩平面平行;
當時,兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。
21.
22.5.
本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù).
解法1
解法2
23.解析:24.3(x-1)-(y+2)+z=0(或3x-y+z=5)本題考查的知識點為平面與直線的方程.
由題設(shè)條件可知應(yīng)該利用點法式方程來確定所求平面方程.
所給直線l的方向向量s=(3,-1,1).若所求平面π垂直于直線l,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點法式方程可知
3(x-1)-[y-(-2)]+(z-0)=0,
即3(x-1)-(y+2)+z=0
為所求平面方程.
或?qū)憺?x-y+z-5=0.
上述兩個結(jié)果都正確,前者3(x-1)-(y+2)z=0稱為平面的點法式方程,而后者3x-y+z-5=0稱為平面的一般式方程.
25.
26.27.e;本題考查的知識點為極限的運算.
注意:可以變形,化為形式的極限.但所給極限通??梢韵茸冃危?/p>
28.e-1/2
29.
30.1/x31.±1.
本題考查的知識點為判定函數(shù)的間斷點.
32.<0
33.34.1.
本題考查的知識點為函數(shù)在一點處導(dǎo)數(shù)的定義.
由于f(1)=2,可知
35.
36.90
37.2/52/5解析:
38.00解析:
39.1
40.41.由二重積分物理意義知
42.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
43.
則
44.
45.
46.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
47.
48.
49.函數(shù)的定義域為
注意
50.
51.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
52.
53.
54.55.由一階線性微分方程通解公式有
56.
57.
58.由等價無窮小量的定義可知
59.
60.
列表:
說明
61.解
62.所給平面圖形如圖4-1中陰影部分所示.
由,可解得因此
:本題考查的知識點為定積分的幾何應(yīng)用:利用定積分表示平面圖形的面積;利用定積分求繞坐標軸旋轉(zhuǎn)而成旋轉(zhuǎn)體體積.這是常見的考試題型,考生應(yīng)該熟練掌握.63.本題考查的知識點為求曲線的切線方程.切線方程為y+3=一3(x+1),或?qū)憺?x+y+6=0.求曲線y=f(x,y)的切線方程,通常要找出切點及函數(shù)在切點處的導(dǎo)數(shù)值.所給問題沒有給出切點,因此依已給條件找出切點是首要問題.得出切點、切線的斜率后,可依直線的點斜式方程求出切線方程.
64.
65.
66.
67.
①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)一定連續(xù)∴a+b=1②
∵可導(dǎo)f-"(x)=f+"(x)∴b=-4∴a=5①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)一定連續(xù)∴a+b=1②∵可導(dǎo)f-"(x)=f+"(x)∴b
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版汽車租賃合同變更通知協(xié)議3篇
- 2024版智能客服系統(tǒng)開發(fā)與運營合同6篇
- 2024年度帶車位別墅商品房住房貸款合同
- 2024年度實木家具定制與環(huán)保材料采購合同3篇
- 2024版工業(yè)園區(qū)草坪綠化環(huán)保合同3篇
- 2024年度三人合伙開展環(huán)保項目合同2篇
- 2024年人力資源管理手冊勞動合同標準版更新及解讀3篇
- 退休返聘人員管理細則(3篇)
- 教育活動實施方案模版(2篇)
- 《軟件開發(fā)質(zhì)量管理研究的國內(nèi)外文獻綜述》7100字
- 報價單(產(chǎn)品報價單)
- 項目經(jīng)理及主要管理人員能力水平
- 小學(xué)四年級上冊數(shù)學(xué)集體備課-記錄
- 《國家心力衰竭指南 2023》解讀
- 人才教育培訓(xùn)部門KPI設(shè)計
- 醫(yī)療設(shè)備培訓(xùn)方案
- 基層醫(yī)院外科發(fā)展現(xiàn)狀及展望
- 天津市天津市河?xùn)|區(qū)2023-2024學(xué)年八年級上學(xué)期期末地理試題(含答案解析)
- 廣東省中山市2023-2024學(xué)年四年級上學(xué)期期末數(shù)學(xué)試卷
- 2022年燕山大學(xué)招聘工作人員考試真題
- 華為經(jīng)營管理-華為經(jīng)營管理華為的IPD(6版)
評論
0/150
提交評論