版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年陜西省延安市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.曲線y=ex與其過原點的切線及y軸所圍面積為
A.
B.
C.
D.
2.()。A.e-6
B.e-2
C.e3
D.e6
3.A.dx+dy
B.
C.
D.2(dx+dy)
4.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)
5.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于().A.A.0B.π/4C.π/2D.π
6.A.-3-xln3
B.-3-x/ln3
C.3-x/ln3
D.3-xln3
7.圖示結(jié)構(gòu)中,F(xiàn)=10N,I為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,α=30。,則各桿強度計算有誤的一項為()。
A.1桿受拉20kNB.2桿受壓17.3kNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
8.
9.A.exln2
B.e2xln2
C.ex+ln2
D.e2x+ln2
10.
A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)
11.
12.
13.A.3B.2C.1D.0
14.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理條件的是()。A.
B.
C.
D.
15.
16.方程2x2-y2=1表示的二次曲面是().A.A.球面B.柱面C.旋轉(zhuǎn)拋物面D.圓錐面
17.
18.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
19.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無水平漸近線,又無鉛直漸近線
20.
二、填空題(20題)21.
22.
23.
24.∫(x2-1)dx=________。
25.
26.過坐標(biāo)原點且與平面2x-y+z+1=0平行的平面方程為______.
27.設(shè)y=y(x)是由方程y+ey=x所確定的隱函數(shù),則y'=_________.
28.若函數(shù)f(x)=x-arctanx,則f'(x)=________.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.三、計算題(20題)41.42.
43.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
44.
45.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.46.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.48.證明:49.50.求曲線在點(1,3)處的切線方程.
51.求微分方程y"-4y'+4y=e-2x的通解.
52.
53.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
54.
55.求微分方程的通解.56.將f(x)=e-2X展開為x的冪級數(shù).57.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.58.59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
60.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
四、解答題(10題)61.
62.
63.將周長為12的矩形繞其一邊旋轉(zhuǎn)得一圓柱體,問繞邊長為多少的邊旋轉(zhuǎn)才能使圓柱體的體積最大?
64.
65.
66.計算其中區(qū)域D由y=x,y=0,x2+y2=1圍成的在第一象限內(nèi)的區(qū)域.
67.確定函數(shù)f(x,y)=3axy-x3-y3(a>0)的極值點.
68.
69.求xyy=1-x2的通解.
70.
五、高等數(shù)學(xué)(0題)71.
六、解答題(0題)72.
參考答案
1.A
2.A
3.C
4.C本題考查的知識點為判定函數(shù)的單調(diào)性。
5.C本題考查的知識點為羅爾定理的條件與結(jié)論.
由于y=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),且y|x=0=0=y|x=π,可知y=sinx在[0,π]上滿足羅爾定理,因此必定存在ξ∈(0,π),使y'|x=ξ=cosx|x=ξ=cosξ=0,從而應(yīng)有.
故知應(yīng)選C.
6.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.
7.C
8.D
9.B本題考查了一階線性齊次方程的知識點。
因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時,f(0)=ln2,所以C=In2,故f(x)=e2xln2.
注:方程y'=2y求解時也可用變量分離.
10.A
本題考查的知識點為級數(shù)絕對收斂與條件收斂的概念.
11.B
12.B
13.A
14.C
15.C
16.B本題考查的知識點為識別二次曲面方程.
由于二次曲面的方程中缺少一個變量,因此它為柱面方程,應(yīng)選B.
17.D
18.B
19.A
20.D
21.4π本題考查了二重積分的知識點。
22.
23.
24.
25.2/32/3解析:26.已知平面的法線向量n1=(2,-1,1),所求平面與已知平面平行,可設(shè)所求平面方程為2x-y+z+D=0,將x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程為2x-y+z=0.
27.1/(1+ey)本題考查了隱函數(shù)的求導(dǎo)的知識點。
28.x2/(1+x2)本題考查了導(dǎo)數(shù)的求導(dǎo)公式的知識點。29.由可變上限積分求導(dǎo)公式可知
30.[e+∞)(注:如果寫成x≥e或(e+∞)或x>e都可以)。[e,+∞)(注:如果寫成x≥e或(e,+∞)或x>e都可以)。解析:31.2.
本題考查的知識點為二階導(dǎo)數(shù)的運算.
32.1/π
33.
解析:
34.-2y
35.3x2siny3x2siny解析:
36.
解析:
37.-1本題考查了洛必達法則的知識點.
38.
39.2cos(x2+y2)(xdx+ydy)2cos(x2+y2)(xdx+ydy)解析:
40.
41.
42.
則
43.由等價無窮小量的定義可知
44.
45.
46.由二重積分物理意義知
47.
48.
49.
50.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
51.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
52.
53.
54.由一階線性微分方程通解公式有
55.
56.
57.
列表:
說明
58.59.函數(shù)的定義域為
注意
60.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024標(biāo)準(zhǔn)技術(shù)服務(wù)采購協(xié)議:精準(zhǔn)定制版B版
- 2024年項目居間服務(wù)協(xié)議標(biāo)準(zhǔn)格式一
- 2024潤滑油行業(yè)展會贊助與推廣合作合同3篇
- 四川省宜賓市中考語文試卷五套【附參考答案】
- 專用場地租賃合作分成合同全文預(yù)覽一
- 16《人的呼吸》說課稿-2024-2025學(xué)年三年級上冊科學(xué)蘇教版
- 2024年石粉購銷合同協(xié)議規(guī)定規(guī)定樣本
- 2025年度網(wǎng)絡(luò)安全隱秘操作風(fēng)險評估與監(jiān)管服務(wù)協(xié)議3篇
- 2024鄭州二手房買賣合同的文本
- 福建省南平市衛(wèi)閩中學(xué)2021年高二地理月考試卷含解析
- 專項債券培訓(xùn)課件
- 2025年1月普通高等學(xué)校招生全國統(tǒng)一考試適應(yīng)性測試(八省聯(lián)考)語文試題
- CNAS-CL01-G001:2024檢測和校準(zhǔn)實驗室能力認可準(zhǔn)則的應(yīng)用要求
- 校園重點防火部位消防安全管理規(guī)定(3篇)
- 臨時施工圍擋安全應(yīng)急預(yù)案
- ICP-網(wǎng)絡(luò)與信息安全保障措施-1.信息安全管理組織機構(gòu)設(shè)置及工作職責(zé)
- 2024城市河湖底泥污染狀況調(diào)查評價技術(shù)導(dǎo)則
- MT-T 1199-2023 煤礦用防爆柴油機無軌膠輪運輸車輛通用安全技術(shù)條件
- 初級銷售管理培訓(xùn)課程
- 《無成人陪伴兒童乘機申請書》樣本
- 超星爾雅學(xué)習(xí)通【西方文論原典導(dǎo)讀(吉林大學(xué))】章節(jié)測試附答案
評論
0/150
提交評論