版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年黑龍江省七臺(tái)河市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.
3.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當(dāng)x<-1時(shí),f(x)<0;當(dāng)x>-1時(shí),f(x)>0.則下列結(jié)論肯定正確的是().
A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)
4.
5.
6.A.A.小于0B.大于0C.等于0D.不確定
7.
8.
9.二元函數(shù)z=x3-y3+3x2+3y2-9x的極小值點(diǎn)為()
A.(1,0)B.(1,2)C.(-3,0)D.(-3,2)
10.設(shè)y=2^x,則dy等于().
A.x.2x-1dx
B.2x-1dx
C.2xdx
D.2xln2dx
11.
12.
13.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線的兩個(gè)力的作用,則()。
A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡
14.當(dāng)a→0時(shí),2x2+3x是x的().A.A.高階無窮小B.等價(jià)無窮小C.同階無窮小,但不是等價(jià)無窮小D.低階無窮小
15.下列關(guān)系式正確的是().A.A.
B.
C.
D.
16.
17.
18.
19.
20.設(shè)Y=e-5x,則dy=().
A.-5e-5xdx
B.-e-5xdx
C.e-5xdx
D.5e-5xdx
21.A.e-2
B.e-1
C.e
D.e2
22.在空間直角坐標(biāo)系中,方程x2-4(y-1)2=0表示()。A.兩個(gè)平面B.雙曲柱面C.橢圓柱面D.圓柱面23.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=A.-1/x
B.1/x
C.-1/x2
D.1/x2
24.
25.=()。A.
B.
C.
D.
26.
27.
28.A.A.2B.-1/2C.1/2eD.(1/2)e1/2
29.交變應(yīng)力的變化特點(diǎn)可用循環(huán)特征r來表示,其公式為()。
A.
B.
C.
D.
30.
31.
32.A.
B.
C.
D.
33.當(dāng)x→0時(shí),x2是2x的A.A.低階無窮小B.等價(jià)無窮小C.同階但不等價(jià)無窮小D.高階無窮小
34.
35.
36.A.A.條件收斂B.絕對(duì)收斂C.收斂性與k有關(guān)D.發(fā)散
37.
38.設(shè)y=exsinx,則y'''=
A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
39.
40.A.
B.
C.
D.
41.構(gòu)件承載能力不包括()。
A.強(qiáng)度B.剛度C.穩(wěn)定性D.平衡性
42.曲線y=x-3在點(diǎn)(1,1)處的切線斜率為()
A.-1B.-2C.-3D.-4
43.微分方程(y)2+(y)3+sinx=0的階數(shù)為
A.1B.2C.3D.444.曲線y=x-ex在點(diǎn)(0,-1)處切線的斜率k=A.A.2B.1C.0D.-145.A.A.yxy-1
B.yxy
C.xylnx
D.xylny
46.
47.設(shè)函數(shù)f(x)在[a,b]上連續(xù),且f(a)·f(b)<0,則必定存在一點(diǎn)ξ∈(a,b)使得()A.f(ξ)>0B.f(ξ)<0C.f(ξ)=0D.f(ξ)=0
48.函數(shù)等于().
A.0B.1C.2D.不存在
49.
50.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.
B.
C.
D.
二、填空題(20題)51.設(shè)y=3x,則y"=_________。
52.53.
54.
55.
56.
57.
58.________。
59.微分方程y'=2的通解為__________。
60.微分方程y=0的通解為.
61.
62.
63.
64.
65.66.
67.
68.
69.
70.三、計(jì)算題(20題)71.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
72.
73.
74.
75.76.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).77.將f(x)=e-2X展開為x的冪級(jí)數(shù).78.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.79.求曲線在點(diǎn)(1,3)處的切線方程.80.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則81.
82.83.證明:84.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.85.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
86.87.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.88.求微分方程的通解.
89.求微分方程y"-4y'+4y=e-2x的通解.
90.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
四、解答題(10題)91.92.設(shè)93.
94.
95.96.97.研究y=3x4-8x3+6x2+5的增減性、極值、極值點(diǎn)、曲線y=f(x)的凹凸區(qū)間與拐點(diǎn).
98.
99.
100.設(shè)z=x2ey,求dz。
五、高等數(shù)學(xué)(0題)101.設(shè)z=exy,則dz|(1,1)(1.1)=___________。
六、解答題(0題)102.求微分方程y'-(1/x)y=-1的通解。
參考答案
1.D
2.B
3.C本題考查的知識(shí)點(diǎn)為極值的第-充分條件.
由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí)f(x)<0;當(dāng)x>-1時(shí),
f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.
4.A
5.A
6.C
7.C
8.B
9.A對(duì)于點(diǎn)(-3,0),A=-18+6=-12,B=0,C=6,B2-AC=72>0,故此點(diǎn)為非極值點(diǎn).對(duì)于點(diǎn)(-3,2),A=-12,B=0,C=-12+6=-6,B2-AC=-72<0,故此點(diǎn)為極大值點(diǎn).對(duì)于點(diǎn)(1,0),A=12,B=0,C=6,B2-AC=-72<0,故此點(diǎn)為極小值點(diǎn).對(duì)于點(diǎn)(1,2),A=12=0,C=-6,B2-AC=72>0,故此點(diǎn)為非極值點(diǎn).
10.D南微分的基本公式可知,因此選D.
11.B
12.C
13.C
14.C本題考查的知識(shí)點(diǎn)為無窮小階的比較.
應(yīng)依定義考察
由此可知,當(dāng)x→0時(shí),2x3+3x是x的同階無窮小,但不是等價(jià)無窮小,故知應(yīng)選C.
本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無窮小盧與無窮小α的階的關(guān)系時(shí),要判定極限
這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.
15.C本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性.
16.A
17.D
18.B
19.C
20.A
【評(píng)析】基本初等函數(shù)的求導(dǎo)公式與導(dǎo)數(shù)的四則運(yùn)算法則是常見的試題,一定要熟記基本初等函數(shù)求導(dǎo)公式.對(duì)簡(jiǎn)單的復(fù)合函數(shù)的求導(dǎo),應(yīng)該注意由外到里,每次求一個(gè)層次的導(dǎo)數(shù),不要丟掉任何一個(gè)復(fù)合層次.
21.D由重要極限公式及極限運(yùn)算性質(zhì),可知故選D.
22.A
23.C
24.D
25.D
26.D
27.D解析:
28.B
29.A
30.C
31.B
32.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
33.D
34.C解析:
35.C解析:
36.A本題考杏的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.
37.B
38.C本題考查了萊布尼茨公式的知識(shí)點(diǎn).
由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
39.B
40.B
41.D
42.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(diǎn)(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(diǎn)(1,1)處的切線斜率為-3,故選C。
43.B
44.C
45.A
46.A
47.D
48.C解析:
49.B
50.C51.3e3x
52.
53.
54.π/2π/2解析:
55.2
56.
57.
解析:58.1
59.y=2x+C60.y=C.
本題考查的知識(shí)點(diǎn)為微分方程通解的概念.
微分方程為y=0.
dy=0.y=C.
61.3e3x3e3x
解析:
62.
63.本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
64.y=1/2y=1/2解析:65.0.
本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)為奇函數(shù),因此
66.解析:
67.
68.
69.
解析:70.本題考查的知識(shí)點(diǎn)為無窮小的性質(zhì)。
71.
72.73.由一階線性微分方程通解公式有
74.
75.
76.
列表:
說明
77.78.函數(shù)的定義域?yàn)?/p>
注意
79.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
80.由等價(jià)無窮小量的定義可知
81.
則
82.
83.
84.
85.
86.
87.由二重積分物理意義知
88.
89.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
90.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%91.本題考查的知識(shí)點(diǎn)為求隱函數(shù)的微分.
解法1將方程兩端關(guān)于x求導(dǎo),可得
解法2將方程兩端求微分
【解題指導(dǎo)】
若y=y(tǒng)(x)由方程F(x,y)=0確定,求dy常常有兩種方法.
(1)將方程F(x,y)=0直接求微分,然后解出dy.
(2)先由方程F(x,y)=0求y,再由dy=y(tǒng)dx得出微分dy.
9
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024標(biāo)準(zhǔn)技術(shù)服務(wù)采購(gòu)協(xié)議:精準(zhǔn)定制版B版
- 2024年項(xiàng)目居間服務(wù)協(xié)議標(biāo)準(zhǔn)格式一
- 2024潤(rùn)滑油行業(yè)展會(huì)贊助與推廣合作合同3篇
- 四川省宜賓市中考語(yǔ)文試卷五套【附參考答案】
- 專用場(chǎng)地租賃合作分成合同全文預(yù)覽一
- 16《人的呼吸》說課稿-2024-2025學(xué)年三年級(jí)上冊(cè)科學(xué)蘇教版
- 2024年石粉購(gòu)銷合同協(xié)議規(guī)定規(guī)定樣本
- 2025年度網(wǎng)絡(luò)安全隱秘操作風(fēng)險(xiǎn)評(píng)估與監(jiān)管服務(wù)協(xié)議3篇
- 2024鄭州二手房買賣合同的文本
- 福建省南平市衛(wèi)閩中學(xué)2021年高二地理月考試卷含解析
- 多感官交互對(duì)文化參與的影響
- 2024至2030年中國(guó)家庭維修行業(yè)發(fā)展前景預(yù)測(cè)及投資策略研究報(bào)告
- 文化旅游場(chǎng)所運(yùn)營(yíng)設(shè)備更新項(xiàng)目資金申請(qǐng)報(bào)告-超長(zhǎng)期特別國(guó)債投資專項(xiàng)
- 2024年新教材七年級(jí)上冊(cè)道德與法治2.1《認(rèn)識(shí)自己》教學(xué)設(shè)計(jì)
- 【人教版】二年級(jí)數(shù)學(xué)上冊(cè)說課稿-第2課時(shí) 直角的認(rèn)識(shí)
- 人員密集場(chǎng)所消防安全標(biāo)準(zhǔn)化管理規(guī)定
- 2024年印尼認(rèn)知評(píng)估和培訓(xùn)解決方案市場(chǎng)競(jìng)爭(zhēng)態(tài)勢(shì)與及未來趨勢(shì)預(yù)測(cè)報(bào)告
- JTG F40-2004 公路瀝青路面施工技術(shù)規(guī)范
- 成都市2022級(jí)(2025屆)高中畢業(yè)班摸底測(cè)試(零診)英語(yǔ)試卷(含答案)
- 光伏發(fā)電技術(shù)在建筑中的應(yīng)用
- NB∕T 10805-2021 水電工程潰壩洪水與非恒定流計(jì)算規(guī)范
評(píng)論
0/150
提交評(píng)論