版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年四川省遂寧市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.為二次積分為()。A.
B.
C.
D.
2.設(shè)y=exsinx,則y'''=A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
3.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值
4.
5.設(shè)f(x)=1-cos2x,g(x)=x2,則當(dāng)x→0時,比較無窮小量f(x)與g(x),有
A.f(x)對于g(x)是高階的無窮小量
B.f(x)對于g(x)是低階的無窮小量
C.f(x)與g(x)為同階無窮小量,但非等價無窮小量
D.f(x)與g(x)為等價無窮小量
6.A.A.2B.1C.0D.-1
7.。A.2B.1C.-1/2D.0
8.曲線y=x-3在點(1,1)處的切線斜率為()
A.-1B.-2C.-3D.-4
9.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
10.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2
11.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于().A.A.2B.1C.-lD.-2
12.
13.A.A.6dx+6dyB.3dx+6dyC.6dx+3dyD.3dx+3ay
14.設(shè)y=sin(x-2),則dy=()A.A.-cosxdx
B.cosxdX
C.-cos(x-2)dx
D.cos(x-2)dx
15.方程x=z2表示的二次曲面是A.A.球面B.橢圓拋物面C.柱面D.圓錐面
16.設(shè)f(x)在點x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點x0必定可導(dǎo)B.f(x)在點x0必定不可導(dǎo)C.必定存在D.可能不存在
17.
18.過曲線y=xlnx上M0點的切線平行于直線y=2x,則切點M0的坐標(biāo)是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)
19.
20.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為().A.A.
B.
C.
D.不能確定
二、填空題(20題)21.
22.
23.設(shè)y=f(x)在點x=0處可導(dǎo),且x=0為f(x)的極值點,則f(0)=__________
24.25.設(shè)x=f(x,y)在點p0(x0,y0)可微分,且p0(x0,y0)為z的極大值點,則______.
26.
27.
28.
29.設(shè)z=sin(x2+y2),則dz=________。
30.微分方程xdx+ydy=0的通解是__________。
31.________。
32.
33.
34.
35.函數(shù)f(x)=在[1,2]上符合拉格朗日中值定理的ξ=________。36.
37.
38.通解為C1e-x+C2e-2x的二階常系數(shù)線性齊次微分方程是____.
39.
40.
三、計算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.42.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
43.
44.45.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
46.
47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.48.證明:49.將f(x)=e-2X展開為x的冪級數(shù).50.求曲線在點(1,3)處的切線方程.51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
52.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
53.
54.55.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則56.
57.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
58.求微分方程y"-4y'+4y=e-2x的通解.
59.求微分方程的通解.60.四、解答題(10題)61.
62.
63.y=xlnx的極值與極值點.
64.求通過點(1,2)的曲線方程,使此曲線在[1,x]上形成的曲邊梯形面積的值等于此曲線弧終點的橫坐標(biāo)x與縱坐標(biāo)y乘積的2倍減去4。
65.
66.
67.
68.
69.70.五、高等數(shù)學(xué)(0題)71.設(shè)f(x),g(x)在[a,b]上連續(xù),則()。
A.若,則在[a,b]上f(x)=0
B.若,則在[a,b]上f(x)=g(x)
C.若a<c<d<b,則
D.若f(x)≤g(z),則
六、解答題(0題)72.
參考答案
1.A本題考查的知識點為將二重積分化為極坐標(biāo)系下的二次積分。由于在極坐標(biāo)系下積分區(qū)域D可以表示為
故知應(yīng)選A。
2.C由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
3.B本題考查了函數(shù)的單調(diào)性的知識點,
因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。
4.A
5.C
6.Df(x)為分式,當(dāng)x=-1時,分母x+1=0,分式?jīng)]有意義,因此點
x=-1為f(x)的間斷點,故選D。
7.A
8.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(1,1)處的切線斜率為-3,故選C。
9.B
10.D本題考查的知識點為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
11.D本題考查的知識點為原函數(shù)的概念、復(fù)合函數(shù)求導(dǎo).
12.C
13.C
14.D本題考查的知識點為微分運算.
可知應(yīng)選D.
15.C方程x=z2中缺少坐標(biāo)y,是以xOy坐標(biāo)面上的拋物線x=z2為準(zhǔn)線,平行于y軸的直線為母線的拋物柱面。所以選C。
16.C本題考查的知識點為極限、連續(xù)與可導(dǎo)性的關(guān)系.
函數(shù)f(x)在點x0可導(dǎo),則f(x)在點x0必連續(xù).
函數(shù)f(x)在點x0連續(xù),則必定存在.
函數(shù)f(x)在點x0連續(xù),f(x)在點x0不一定可導(dǎo).
函數(shù)f(x)在點x0不連續(xù),則f(x)在點x0必定不可導(dǎo).
這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.
17.C
18.D本題考查的知識點為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點x0處可導(dǎo),則曲線y=f(x)在點(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).
由于y=xlnx,可知
y'=1+lnx,
切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有
1+lnx0=2,
可解得x0=e,從而知
y0=x0lnx0=elne=e.
故切點M0的坐標(biāo)為(e,e),可知應(yīng)選D.
19.C解析:
20.B本題考查的知識點為定積分的幾何意義.
由定積分的幾何意義可知應(yīng)選B.
常見的錯誤是選C.如果畫個草圖,則可以避免這類錯誤.
21.-2
22.
23.
24.25.0本題考查的知識點為二元函數(shù)極值的必要條件.
由于z=f(x,y)在點P0(x0,y0)可微分,P(x0,y0)為z的極值點,由極值的必要條件可知
26.
27.本題考查的知識點為函數(shù)商的求導(dǎo)運算.
考生只需熟記導(dǎo)數(shù)運算的法則
28.
29.2cos(x2+y2)(xdx+ydy)
30.x2+y2=C31.1
32.(00)
33.
34.
35.由拉格朗日中值定理有=f"(ξ),解得ξ2=2,ξ=其中。
36.本題考查的知識點為定積分運算.
37.
38.
39.
40.00解析:
41.
列表:
說明
42.
43.
44.
45.
46.
47.
48.
49.50.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
51.函數(shù)的定義域為
注意
52.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
53.
則
54.55.由等價無窮小量的定義可知56.由一階線性微分方程通解公式有
57.由二重積分物理意義知
58.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
59.
60.
61.
62.
63.y=xlnx的定義域為x>0y'=1+lnx.令y'=0得駐點x1=e-1.當(dāng)0<x<e-1時y'<0;當(dāng)e-1<x時y'>0.可知x=e-1為y=xlnx的極小值點.極小值為y=xlnx的定義域為x>0y'=1+lnx.令y'=0得駐點x1=e-1.當(dāng)0<x<e-1時,y'<0;當(dāng)e-1<x時,y'>0.可知x=e-1為y=xlnx的極小值點.極小值為
64.
65.
66.
67.68.本題考查的知識點為導(dǎo)數(shù)的應(yīng)用.
單調(diào)增加區(qū)間為(0,+∞);
單調(diào)減少區(qū)間為(-∞,0);
極小值為5,極小值點為x=0;
注上述表格填正確,則可得滿分.
這個題目包含了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性;求函數(shù)的極值與極值點;求曲線的凹凸區(qū)間與拐點.69.利用洛必達(dá)法則原式,接下
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45065-2024皮革和毛皮化學(xué)試驗揮發(fā)性甲基環(huán)硅氧烷殘留量的測定
- 二零二五年度房地產(chǎn)投資居間服務(wù)盡職調(diào)查合同3篇
- 二零二五年度二手車過戶業(yè)務(wù)資金監(jiān)管及擔(dān)保服務(wù)合同
- 二零二五年度出租車車輛租賃與乘客服務(wù)滿意度調(diào)查合同3篇
- 二零二五年度SEO關(guān)鍵詞研究及分析服務(wù)合同2篇
- 二零二五年度海上貨物共同海損處理合同3篇
- 二零二五年度新媒體短視頻節(jié)目制作服務(wù)協(xié)議2篇
- 豌豆的種植課程設(shè)計
- 2025年度數(shù)據(jù)中心冷卻系統(tǒng)安裝工程合同9篇
- 二零二五年度房屋買賣合同范本:維修基金結(jié)算3篇
- (正式版)HG∕T 21633-2024 玻璃鋼管和管件選用規(guī)定
- 07FD02防空地下室電氣設(shè)備安裝圖集
- 基礎(chǔ)會計(第7版)ppt課件完整版
- Q∕SY 1206.1-2009 油氣管道通信系統(tǒng)通用技術(shù)規(guī)范 第1部分:光傳輸系統(tǒng)
- 汽車4S店八大運營業(yè)績指標(biāo)管控培訓(xùn)_89頁
- 設(shè)備安裝、調(diào)試及驗收質(zhì)量保證措施
- 火力發(fā)電廠生產(chǎn)技術(shù)管理導(dǎo)則
- 汽輪機葉片振動與分析
- 地質(zhì)工作個人述職報告三篇
- 產(chǎn)品可追溯流程圖圖
- 形意拳九歌八法釋意
評論
0/150
提交評論