2023年山東省威海市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2023年山東省威海市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2023年山東省威海市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2023年山東省威海市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2023年山東省威海市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年山東省威海市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)

2.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。

A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)

3.

4.A.eB.e-1

C.e2

D.e-2

5.

6.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

7.設(shè)y=exsinx,則y'''=A.cosx·ex

B.sinx·ex

C.2ex(cosx-sinx)

D.2ex(sinx-cosx)

8.

9.設(shè)f(x)的一個(gè)原函數(shù)為x2,則f'(x)等于().

A.

B.x2

C.2x

D.2

10.設(shè)f(x)為連續(xù)函數(shù),則(∫f5x)dx)'等于()A.A.

B.5f(x)

C.f(5x)

D.5f(5x)

11.A.f(1)-f(0)

B.2[f(1)-f(0)]

C.2[f(2)-f(0)]

D.

12.A.

B.

C.

D.

13.

14.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2

15.()。A.3B.2C.1D.0

16.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()

A.單調(diào)減少B.單調(diào)增加C.無(wú)最大值D.無(wú)最小值

17.

18.

19.lim(x2+1)=

x→0

A.3

B.2

C.1

D.0

20.設(shè)y=f(x)為可導(dǎo)函數(shù),則當(dāng)△x→0時(shí),△y-dy為△x的A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.低階無(wú)窮小

二、填空題(20題)21.

22.

23.

24.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則

25.

26.

27.

28.

29.

30.

31.

32.

33.設(shè)函數(shù)x=3x+y2,則dz=___________

34.

35.

36.

37.

38.

39.

40.

三、計(jì)算題(20題)41.

42.證明:

43.求微分方程的通解.

44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

45.

46.將f(x)=e-2X展開為x的冪級(jí)數(shù).

47.

48.求曲線在點(diǎn)(1,3)處的切線方程.

49.求微分方程y"-4y'+4y=e-2x的通解.

50.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

51.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

52.

53.

54.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

55.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

56.

57.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

58.

59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

60.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

四、解答題(10題)61.求曲線y=在點(diǎn)(1,1)處的切線方程.

62.(本題滿分10分)

63.

64.

65.

66.

67.

68.設(shè)函數(shù)y=xlnx,求y''.

69.

70.

五、高等數(shù)學(xué)(0題)71.求y=2x3一9x2+12x+1在[0,3]上的最值。

六、解答題(0題)72.

參考答案

1.A

2.A

3.B

4.C

5.C

6.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

7.C由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).

8.D解析:

9.D解析:本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.

由于x2為f(x)的原函數(shù),因此

f(x)=(x2)'=2x,

因此

f'(x)=2.

可知應(yīng)選D.

10.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì).

(∫f5x)dx)'為將f(5x)先對(duì)x積分,后對(duì)x求導(dǎo).若設(shè)g(x)=f(5x),則(∫f5x)dx)'=(∫g(x)dx)'表示先將g(x)對(duì)x積分,后對(duì)x求導(dǎo),因此(∫f(5x)dx)'=(∫g(x)dx)'=g(x)=f(5x).

可知應(yīng)選C.

11.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.

可知應(yīng)選D.

12.C

13.B

14.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

15.A

16.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.

17.B

18.A

19.C

20.A由微分的定義可知△y=dy+o(△x),因此當(dāng)△x→0時(shí)△y-dy=o(△x)為△x的高階無(wú)窮小,因此選A。

21.-4cos2x

22.

23.3

24.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算。

如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長(zhǎng)、寬都為1的正形,可知其面積為1。因此

25.0

26.0

27.發(fā)散本題考查了級(jí)數(shù)的斂散性(比較判別法)的知識(shí)點(diǎn).

28.

解析:

29.

本題考查的知識(shí)點(diǎn)為兩個(gè):參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).

30.

本題考查了一元函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)

31.e1/2e1/2

解析:

32.

本題考查的知識(shí)點(diǎn)為定積分的基本公式.

33.

34.5/4

35.

解析:

36.

37.

解析:

38.

本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.

39.

本題考查的知識(shí)點(diǎn)為:參數(shù)方程形式的函數(shù)求導(dǎo).

40.

41.

42.

43.

44.

45.

46.

47.

48.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

49.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

50.函數(shù)的定義域?yàn)?/p>

注意

51.由二重積分物理意義知

52.

53.

54.

55.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

56.由一階線性微分方程通解公式有

57.由等價(jià)無(wú)窮小量的定義可知

58.

59.

60.

列表:

說(shuō)明

61.由于

所以

因此曲線y=在點(diǎn)(1,1)處的切線方程為或?qū)憺閤-2y+1=0本題考查的知識(shí)點(diǎn)為曲線的切線方程.

62.本題考查的知識(shí)點(diǎn)為二重積分運(yùn)算和選擇二次積分次序.

63.

64.

65.

66.

67.

68.

69.

70.

71.y=2x3一9x2+12x+1;y"=6

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論