




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第九章直線、平面、簡單幾何體19.9棱
柱考點搜索●棱柱及其底面、側面、側棱、高等概念,斜棱柱、直棱柱、正棱柱的概念●棱柱的基本性質,平行六面體的有關概念和性質高2高考猜想1.以小題形式考查棱柱的有關概念和性質.2.有關棱柱的棱長、高、面積等幾何量的計算.3.以棱柱為背景的線面位置關系、角和距離的分析與求解.31.如果一個多面體有①________互相平行,而其余每相鄰兩個面的②______互相平行,這樣的多面體叫做棱柱,兩個互相平行的面叫做棱柱的③______,其余各面叫做棱柱的④______,兩側面的公共邊叫做棱柱的⑤______,兩個底面所在平面的⑥__________叫做棱柱的高.2.側棱⑦__________底面的棱柱叫做斜棱柱,側棱⑧________底面的棱柱叫做直棱柱,底面是⑨__________的直棱柱叫做正棱柱.兩個面交線底面?zhèn)让鎮(zhèn)壤夤咕€段不垂直于垂直于正多邊形4
3.
棱柱的各個側面都是⑩____________;所有的側棱都
______;直棱柱的各個側面都
______;正棱柱的各個側面都是
___________.
4.棱柱的兩個底面與平行于底面的截面是對應邊互相平行的
______________.
5.過棱柱不相鄰的兩條側棱的截面都是
____________.
6.底面是
___________的四棱柱叫做平行六面體,_________________的平行六面體叫做直平行六面體,底面是______的直平行六面體叫做長方體.___________的長方體叫做正方體.111213141516171819平行四邊形相等矩形全等的矩形全等的多邊形平行四邊形平行四邊形側棱垂直于底面矩形棱長都相等5
7.平行六面體的對角線___________,并且在_____處互相平分.
8.長方體的一條對角線長的平方等于一個頂點上三條棱長的_______.
9.設直棱柱的底面周長為c,側棱長為l則其側面積S側=____.
10.設棱柱的底面積為S,高為h,則其體積V=_____.2021222324交于一點交點平方和clSh6
盤點指南:①兩個面;②交線;③底面;④側面;⑤側棱;⑥公垂線段;⑦不垂直于;⑧垂直于;⑨正多邊形;⑩平行四邊形;相等;矩形;全等的矩形;全等多邊形;平行四邊形;平行四邊形;側棱垂直于底面;矩形;棱長都相等;交于一點;交點;平方和;cl;Sh11121314151617181920212223247
1.如圖,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,則C1在底面ABC上的射影H必在()A.直線AB上B.直線BC上C.直線AC上D.△ABC內部
解:由AC⊥AB,AC⊥BC1,知AC⊥平面ABC1,從而平面ABC1⊥平面ABC,因此,C1在底面ABC上的射影H必在兩面的交線AB上.A8如圖,正四棱柱ABCD-A1B1C1D1中,底面邊長為
,側棱長為4,E、F分別為棱AB、BC的中點,EF∩BD=G.則點D1到平面B1EF的距離為()A.B.C.D.
解:在對角面BDD1B1中,作D1H⊥B1G,垂足為H.9
因為平面B1EF⊥平面BDD1B1,且平面B1EF∩平面BDD1B1=B1G,所以D1H⊥平面B1EF.所以點D1到平面B1EF的距離d=D1H.
方法1:在Rt△D1HB1中,D1H=D1B1·sin∠D1B1H.因為D1B1=A1B1==4,sin∠D1B1H=sin∠B1GB==,所以d=D1H=.10
方法2:因為△D1HB1∽△B1BG,所以D1HB1B=D1B1B1G.所以d=D1H=方法3:連結D1G,則△D1GB1的面積等于正方形DBB1D1面積的一半,即
所以
11在正四棱柱ABCD-A1B1C1D1中,E、F、G、H分別是棱CC1、C1D1、D1D、DC的中點,N是BC的中點,點M在四邊形EFGH的邊及其內部運動,則M只需滿足條件_________
時,就有MN⊥AC.
解:本題答案不唯一,當點M在線段FH上時均有MN⊥AC.
121.在直平行六面體ABCD-A1B1C1D1中,已知△BDC1和△ACD1都是正三角形.求證:這個直平行六面體是正方體.
證明:由已知BC1=DC1,∠BCC1=∠DCC1=90°,CC1=CC1,所以△BCC1≌△DCC1,所以BC=DC,從而底面ABCD為菱形.題型1
判斷或證明棱柱的類型13因為△ACD1為正三角形,所以AC=AD1.又BC1=AD1,所以AC=BC1.因為BD=BC1,所以AC=BD,從而底面ABCD為正方形,所以直平行六面體ABCD-A1B1C1D1為正四棱柱.因為AC=BC1,BC=BC,∠ABC=∠C1CB=90°,所以△ABC≌△C1CB,所以AB=CC1.故該直平行六面體為正方體.14
點評:棱柱、直棱柱、正棱柱等之間具有一定的包含關系,而正方體又是特殊的正四棱柱,判斷或證明一個棱柱為特殊的棱柱,找齊定義中的條件即可.15已知正四棱柱ABCD—A1B1C1D1中,面對角線A1B與平面A1B1CD所成的角為30°.求證:此四棱柱為正方體.
證明:設AB=a,B1B=b,過點B作BO⊥B1C于O,連結A1O.由A1B1⊥平面BCC1B1,得BO⊥A1B1,所以BO⊥平面A1B1CD.所以∠BA1O=30°.16所以又因為BB1·BC=BO·B1C,所以
,所以即(a-b)2=0,則a=b,即AB=BB1.所以此四棱柱為正方體.17
2.如圖,在斜三棱柱ABC-A1B1C1中,∠A1AC=∠ACB=,∠AA1C=,側棱BB1與底面所成的角為
,AA1=,BC=4.求斜三棱柱的底面積和高.
解:在Rt△AA1C中,AC=AA1·tan∠AA1C==4.所以S△ABC=×4×4=8.題型2棱柱中的有關計算18作B1H⊥平面ABC,垂足為H,則∠B1BH=.在Rt△B1BH中,B1H=BB1·sin∠B1BH=AA1·sin==6.
點評:棱柱的性質是解決棱柱有關計算的基礎,而合理地將條件及所求轉化到某些三角形中則是關鍵.空間中的計算問題大多是轉化到一些三角形中,運用邊角關系去解.19正三棱柱ABC-A1B1C1的底面邊長為
,高為2.過點B作平行于棱AC的截面,使截面與底面成60°的二面角,求這個截面的面積.
解:連結A1B、C1B,取A1C1的中點D,連結BD、B1D,則BD⊥A1C1,B1D⊥A1C1.20由已知,B1D=sin60°=3,BB1=2,所以在Rt△BB1D中,tan∠BDB1=
所以∠BDB1<60°,從而截面與上底面A1B1C1相交,設分別與A1B1、C1B1相交于E、F,交B1D于M,連結BM.因為A1C1∥平面BEF,所以A1C1∥EF,所以B1M⊥EF,BM⊥EF,所以∠BMB1為截面與底面所成的角.21由已知∠BMB1=60°.在Rt△BB1M中,
在Rt△B1ME中,EM=B1Mtan30°=,所以EF=,所以S截=EF·BM=.22
3.如圖,斜三棱柱ABC-A1B1C1中,兩個側面AC1和AB1的面積之比為5∶8,它們所成的二面角為60°.棱柱的側面積為60cm2,體積為
cm3,求棱柱的側棱長.
解:考慮斜三棱柱的一個直截面DEF.如圖.因為DF⊥AA1,DE⊥AA1,所以∠EDF為題中所述的二面角的平面角,即∠EDF=60°,題型3有關棱柱側面積和體積的分析與計算23且
=DF∶DE=5∶8.設DE=8x,DF=5x,則在△EDF中,由余弦定理得EF=7x.再設側棱長為l,則有方程組解得l=6.即棱柱的側棱長為6cm.24
點評:棱柱的側面積、底面積及體積的計算是立體幾何中常見的計算題,對一些常見結論須熟悉.如棱柱的體積等于底面積乘以高,也可是直截面(即垂直側棱的截面)乘以側棱長;三棱柱三個側面面積滿足余弦定理等.25
平行六面體相交于一個頂點的三條棱的長分別是a、b、c,三條棱中每兩條的夾角都是60°,求它的體積.
解:如圖,取AA1=c,AB=a,AD=b.因為∠A1AD=∠A1AB,所以A1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅館業(yè)數(shù)字化轉型與智能化技術應用考核試卷
- 建筑工程法律法規(guī)深度剖析考核試卷
- (完整版)協(xié)商一致解除(或終止)勞動合同協(xié)議書
- 體育經(jīng)紀人與運動員職業(yè)風險管理考核試卷
- 旅游業(yè)投訴處理培訓課件
- 西安房子購買合同范本
- 金融產(chǎn)品推廣及銷售服務合同
- 電腦系統(tǒng)技術服務合同
- 養(yǎng)豬產(chǎn)業(yè)作業(yè)指導書
- 公司信息化建設方案設計書
- 車間生產(chǎn)現(xiàn)場5S管理基礎知識培訓課件
- 區(qū)域保護合同模板
- 讀《這樣教學很有效-任務驅動式課堂教學》心得體會
- DB11 945-2012 建設工程施工現(xiàn)場安全防護、場容衛(wèi)生及消防保衛(wèi)標準
- BEC商務英語初級考試歷年真題及答案6套
- 消除“艾梅乙”醫(yī)療歧視-從我做起
- 基于項目化學習的小學美術跨學科主題教學實踐研究
- GB/T 44625-2024動態(tài)響應同步調相機技術要求
- 家具廠質量管理體系手冊
- 《家庭教育學第2版》全套教學課件
- 2024~2025學年度八年級數(shù)學上冊第1課時 負整數(shù)指數(shù)冪教學設計
評論
0/150
提交評論