![山東省煙臺(tái)市濱海中學(xué)2021年高三數(shù)學(xué)理上學(xué)期期末試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view/529e91cf24ef58d307506261026f3cfa/529e91cf24ef58d307506261026f3cfa1.gif)
![山東省煙臺(tái)市濱海中學(xué)2021年高三數(shù)學(xué)理上學(xué)期期末試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view/529e91cf24ef58d307506261026f3cfa/529e91cf24ef58d307506261026f3cfa2.gif)
![山東省煙臺(tái)市濱海中學(xué)2021年高三數(shù)學(xué)理上學(xué)期期末試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view/529e91cf24ef58d307506261026f3cfa/529e91cf24ef58d307506261026f3cfa3.gif)
![山東省煙臺(tái)市濱海中學(xué)2021年高三數(shù)學(xué)理上學(xué)期期末試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view/529e91cf24ef58d307506261026f3cfa/529e91cf24ef58d307506261026f3cfa4.gif)
![山東省煙臺(tái)市濱海中學(xué)2021年高三數(shù)學(xué)理上學(xué)期期末試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view/529e91cf24ef58d307506261026f3cfa/529e91cf24ef58d307506261026f3cfa5.gif)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省煙臺(tái)市濱海中學(xué)2021年高三數(shù)學(xué)理上學(xué)期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.已知曲線(xiàn)在點(diǎn)(1,ae)處的切線(xiàn)方程為y=2x+b,則A.a(chǎn)=e,b=-1 B.a(chǎn)=e,b=1 C.a(chǎn)=e-1,b=1 D.a(chǎn)=e-1,參考答案:D將代入得,故選D.
2.設(shè)是定義在R上的周期為3的周期函數(shù),如圖表示該函數(shù)在區(qū)間(-2,1]上的圖像,則+=(
)A、3
B、2
C、1
D、0
參考答案:C3.己知橢圓直線(xiàn)l過(guò)左焦點(diǎn)且傾斜角為,以橢圓的長(zhǎng)軸為直徑的圓截l所得的弦長(zhǎng)等于橢圓的焦距,則橢圓的離心率為(
)A. B. C. D.參考答案:D【分析】假設(shè)直線(xiàn)方程,求得圓心到直線(xiàn)的距離,利用弦長(zhǎng)等于可構(gòu)造關(guān)于的齊次方程,從而求得離心率.【詳解】由題意知,橢圓左焦點(diǎn)為,長(zhǎng)軸長(zhǎng)為,焦距為設(shè)直線(xiàn)方程為:,即則以橢圓長(zhǎng)軸為直徑的圓的圓心為,半徑為圓心到直線(xiàn)的距離,整理得:橢圓的離心率為本題正確選項(xiàng):【點(diǎn)睛】本題考查橢圓離心率的求解,關(guān)鍵是能夠利用直線(xiàn)被圓截得的弦長(zhǎng)構(gòu)造出關(guān)于的齊次方程.
4.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若2a8=6+a11,則S9的值等于()A.54 B.45C.36 D.27參考答案:A5.已知函數(shù)f(x)=sin2x向左平移個(gè)單位后,得到函數(shù)y=g(x),下列關(guān)于y=g(x)的說(shuō)法正確的是()A.圖象關(guān)于點(diǎn)(﹣,0)中心對(duì)稱(chēng) B.圖象關(guān)于x=﹣軸對(duì)稱(chēng)C.在區(qū)間單調(diào)遞增 D.在單調(diào)遞減參考答案:C【考點(diǎn)】函數(shù)y=Asin(ωx+φ)的圖象變換.【專(zhuān)題】三角函數(shù)的圖像與性質(zhì);簡(jiǎn)易邏輯.【分析】根據(jù)函數(shù)圖象的平移變換法則“左加右減,上加下減”,易得到函數(shù)y=sin2x的圖象向左平移個(gè)單位后,得到的圖象對(duì)應(yīng)的函數(shù)解析式,然后利用函數(shù)的對(duì)稱(chēng)性,單調(diào)性判斷選項(xiàng)即可.【解答】解:函數(shù)y=sin2x的圖象向左平移個(gè)單位,得到的圖象對(duì)應(yīng)的函數(shù)為y=sin2(x+)=sin(2x+).對(duì)于A(yíng),當(dāng)x=﹣時(shí),y=sin(﹣)≠0.圖象不關(guān)于點(diǎn)(﹣,0)中心對(duì)稱(chēng),∴A不正確;對(duì)于B,當(dāng)x=﹣時(shí),y=sin0=0,圖象不關(guān)于x=﹣軸對(duì)稱(chēng),∴B不正確對(duì)于C,y=sin(2x+)的周期是π.當(dāng)x=時(shí),函數(shù)取得最大值,x=﹣時(shí),函數(shù)取得最小值,∵?,∴在區(qū)間單調(diào)遞增,∴C正確;對(duì)于D,y=sin(2x+)的周期是π.當(dāng)x=時(shí),函數(shù)取得最大值,∴在單調(diào)遞減不正確,∴D不正確;故選:C.【點(diǎn)評(píng)】本題考查的知識(shí)點(diǎn)是函數(shù)圖象的平移變換,其中熟練掌握?qǐng)D象的平移變換法則“左加右減,上加下減”,是解答本題的關(guān)鍵6.已知集合M={1,2,5},,故M∩N等于(
)A.{1} B.{5} C.{1,2} D.{2,5}參考答案:C集合,,則.7.某廣播電臺(tái)只在每小時(shí)的整點(diǎn)和半點(diǎn)開(kāi)始播送新聞,時(shí)長(zhǎng)均為5分鐘,則一個(gè)人在不知道時(shí)間的情況下打開(kāi)收音機(jī)收聽(tīng)該電臺(tái),能聽(tīng)到新聞的概率是(
)A.
B.
C.
D.參考答案:D8.平面向量與的夾角為60°,=(2,0),||=1,則|+2|等于A(yíng). B. C.4
D.參考答案:D略9.函數(shù)的最小正周期為,為了得到的圖象,只需將函數(shù)的圖象(
)(A)向左平移個(gè)單位長(zhǎng)度
(B)向右平移個(gè)單位長(zhǎng)度 (C)向左平移個(gè)單位長(zhǎng)度
(D)向右平移個(gè)單位長(zhǎng)度參考答案:C10.已知命題p:若x>y,則-x<-y,命題q:若x>y,則x2>y2.在命題①p∧q;②p∨q;③p∧(q);④(p)∨q中,真命題是()A.①③
B.①④
C.②③
D.②④參考答案:C略二、填空題:本大題共7小題,每小題4分,共28分11.已知,,且,若恒成立,則實(shí)數(shù)m的取值范圍是____.參考答案:(-4,2)試題分析:因?yàn)楫?dāng)且僅當(dāng)時(shí)取等號(hào),所以考點(diǎn):基本不等式求最值12.曲線(xiàn)的長(zhǎng)度是
.參考答案:無(wú)略13.已知四棱錐P﹣ABCD的五個(gè)頂點(diǎn)都在球O的球面上,底面ABCD是矩形,平面PAD垂直于平面ABCD,在△PAD中,PA=PD=2,∠APD=120°,AB=4,則球O的表面積等于.參考答案:32π【考點(diǎn)】LG:球的體積和表面積.【分析】求出△PAD所在圓的半徑,利用勾股定理求出球O的半徑R,即可求出球O的表面積.【解答】解:令△PAD所在圓的圓心為O1,則因?yàn)镻A=PD=2,∠APD=120°,所以AD=2,所以圓O1的半徑r==2,因?yàn)槠矫鍼AD⊥底面ABCD,所以O(shè)O1=AB=2,所以球O的半徑R=2,所以球O的表面積=4πR2=32π.故答案為32π.【點(diǎn)評(píng)】本題考查球O的表面積,考查學(xué)生的計(jì)算能力,求出球O的半徑是關(guān)鍵,比較基礎(chǔ).14.教材中“坐標(biāo)平面上的直線(xiàn)”與“圓錐曲線(xiàn)”兩章內(nèi)容體現(xiàn)出解析幾何的本質(zhì)是
.參考答案:答案:用代數(shù)的方法研究圖形的幾何性質(zhì)
15.已知向量=(,1),=(+3,-2),若∥,則x=_____參考答案:16.已知m?{-1,0,1},n?{-1,1},若隨機(jī)選取m,n,則直線(xiàn)恰好不經(jīng)過(guò)第二象限的概率是
▲
.參考答案:1/3略17.函數(shù)y=lg(1﹣)+的定義域是.參考答案:[log23,+∞)【考點(diǎn)】函數(shù)的定義域及其求法.【分析】根據(jù)函數(shù)成立的條件,即可求出函數(shù)的定義域.【解答】解:要使函數(shù)有意義,則,即,∴x≥log23,即函數(shù)的定義域?yàn)閇log23,+∞),故答案為:[log23,+∞)三、解答題:本大題共5小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟18.如圖,為圓的直徑,點(diǎn),在圓上,,矩形和圓所在的平面互相垂直,已知,.(Ⅰ)求證:平面平面;(Ⅱ)當(dāng)AD=2時(shí),求多面體FABCD體積.
參考答案:(Ⅰ)∵平面平面,平面平面,∴平面,∵平面,∴,又∵為圓的直徑,∴,∴平面,∵平面,∴平面平面(Ⅱ)19.(本小題滿(mǎn)分12分)如圖,四邊形ABCD中,為正三角形,,,AC與BD交于O點(diǎn).將沿邊AC折起,使D點(diǎn)至P點(diǎn),已知PO與平面ABCD所成的角為,且P點(diǎn)在平面ABCD內(nèi)的射影落在內(nèi).
(Ⅰ)求證:平面PBD;
(Ⅱ)若已知二面角的余弦值為,求的大小.參考答案:(Ⅰ)易知為的中點(diǎn),則,又,
又,平面,所以平面(Ⅱ)方法一:以為軸,為軸,過(guò)垂直于
平面向上的直線(xiàn)為軸建立如圖所示空間
直角坐標(biāo)系,則,,,易知平面的法向量為
,
設(shè)平面的法向量為
則由得,
解得,,令,則
則
解得,,即,即,
又,∴,故.方法二:作,連接,
由(Ⅰ)知平面,又平面,
∴,又,平面,
∴平面,又平面,∴,
∴即為二面角的平面角
作于,由平面及平面知,
又,平面,所以平面
所以即為直線(xiàn)與平面所成的角,即
在中,,
由=知,,
則,又,所以,故.20.某服裝廠(chǎng)生產(chǎn)一種服裝,每件服裝的成本為40元,出廠(chǎng)單價(jià)定為60元,該廠(chǎng)為鼓勵(lì)銷(xiāo)售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過(guò)100件時(shí),每多訂購(gòu)一件,訂購(gòu)的全部服裝的出場(chǎng)單價(jià)就降低0.02元,根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售商一次訂購(gòu)量不會(huì)超過(guò)600件.(1)設(shè)一次訂購(gòu)x件,服裝的實(shí)際出廠(chǎng)單價(jià)為p元,寫(xiě)出函數(shù)p=f(x)的表達(dá)式;(2)當(dāng)銷(xiāo)售商一次訂購(gòu)多少件服裝時(shí),該廠(chǎng)獲得的利潤(rùn)最大?其最大利潤(rùn)是多少?參考答案:(1)當(dāng)0<x≤100時(shí),p=60;當(dāng)100<x≤600時(shí),p=60-(x-100)×0.02=62-0.02x.∴p=(2)設(shè)利潤(rùn)為y元,則當(dāng)0<x≤100時(shí),y=60x-40x=20x;當(dāng)100<x≤600時(shí),y=(62-0.02x)x-40x=22x-0.02x2.∴y=當(dāng)0<x≤100時(shí),y=20x是單調(diào)增函數(shù),當(dāng)x=100時(shí),y最大,此時(shí)y=20×100=2000;當(dāng)100<x≤600時(shí),y=22x-0.02x2=-0.02(x-550)2+6050,∴當(dāng)x=550時(shí),y最大,此時(shí)y=6050.顯然6050>2000.所以當(dāng)一次訂購(gòu)550件時(shí),利潤(rùn)最大,最大利潤(rùn)為6050元.21.已知正四棱柱ABCD﹣A1B1C1D1的底面邊長(zhǎng)為2,.(1)求該四棱柱的側(cè)面積與體積;(2)若E為線(xiàn)段A1D的中點(diǎn),求BE與平面ABCD所成角的大小.參考答案:考點(diǎn):直線(xiàn)與平面所成的角;棱柱、棱錐、棱臺(tái)的體積.專(zhuān)題:空間位置關(guān)系與距離;空間角.分析:(1)題目給出的是正四棱柱,給出了底面邊長(zhǎng)和一條側(cè)面對(duì)角線(xiàn)的長(zhǎng),所以先求出正四棱柱的側(cè)棱長(zhǎng),也就是四棱柱的高,直接利用側(cè)面積公式及體積公式求解該四棱柱的側(cè)面積與體積;(2)在平面ADD1A1內(nèi)過(guò)E作EF⊥AD,由面面垂直的性質(zhì)可得EF⊥底面ABCD,連接BF后,則∠EBF為要求的線(xiàn)面角,然后通過(guò)求解直角三角形求出∠EBF的正切值,利用反三角函數(shù)可表示出要求的角.解答:解:(1)根據(jù)題意可得:在Rt△AA1D中,.所以正四棱柱的側(cè)面積S=(2×3)×4=24.體積V=2×2×3=12;(2)如圖,過(guò)E作EF⊥AD,垂足為F,連結(jié)BF,則EF⊥平面ABCD,∵BE?平面ABCD,∴EF⊥BF在Rt△BEF中,∠EBF就是BE與平面ABCD所成的角∵EF⊥AD,AA1⊥AD,∴EF∥AA1,又E是A1D的中點(diǎn),∴EF是△AA1D的中位線(xiàn),∴在Rt△AFB中,∴.∴.點(diǎn)評(píng):本題考查了柱體的側(cè)面積與體積,考查了線(xiàn)面角,解答此題的關(guān)鍵是利用面面垂直的性質(zhì)定理找到線(xiàn)面角,此題屬中檔題.22.參考答案:解析:(1)因?yàn)樗倪呅蜛BCD內(nèi)接于圓,所以∠ABC
+∠ADC=180°,連接AC,由余弦定理:AC2=42+62–2×4×6×cos∠ABC=42+22–2×2×4cos∠ADC.所以cos∠ABC=,∵∠ABC∈(0,),故∠ABC=60°.S四邊形ABCD=×4×6×sin60°+×2×4×sin120°=8(萬(wàn)平方米).………………4分在△ABC中,由余弦定理:AC2=AB2+BC2–2AB·BC·cos∠ABC
=16+36–2×4×6×.
AC=.…………6分由正弦定理,∴∴(萬(wàn)米).………………8分(2)∵S四邊形APCD=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度城市配送貨車(chē)運(yùn)輸承包服務(wù)合同
- 2025年度互聯(lián)網(wǎng)企業(yè)股東股份收購(gòu)與轉(zhuǎn)讓服務(wù)協(xié)議
- 買(mǎi)賣(mài)交易合同(29篇)
- 2024-2025學(xué)年第25課中華人民共和國(guó)成立和向社會(huì)主義的過(guò)渡-勤徑學(xué)升高中歷史必修上同步練測(cè)(統(tǒng)編版2019)
- 2025年光伏產(chǎn)業(yè)協(xié)同發(fā)展協(xié)議
- 2025年醫(yī)院人員勞動(dòng)合同格式
- 2025年中學(xué)食堂食材供應(yīng)合同模板
- 2025年二手住宅購(gòu)買(mǎi)貸款合同指南
- 2025年雙方解除雇傭合同文件
- 2025年黏膜制劑材料項(xiàng)目提案報(bào)告模板
- (正式版)JBT 14682-2024 多關(guān)節(jié)機(jī)器人用伺服電動(dòng)機(jī)技術(shù)規(guī)范
- 2024年職業(yè)衛(wèi)生技術(shù)人員評(píng)價(jià)方向考試題庫(kù)附答案
- 紅樓夢(mèng)詩(shī)詞全集
- 像科學(xué)家一樣思考-怎么做-怎么教-
- 苯胺合成靛紅工藝
- 三年級(jí)上冊(cè)數(shù)學(xué)脫式計(jì)算大全600題及答案
- 2024年度農(nóng)村電子商務(wù)ppt演示課件
- 計(jì)算機(jī)控制系統(tǒng) 課件 第10章 網(wǎng)絡(luò)化控制系統(tǒng)的分析與設(shè)計(jì)
- 高原反應(yīng)的癥狀和處理方法
- 南京大學(xué)儀器分析習(xí)題集
- 空調(diào)維保應(yīng)急預(yù)案
評(píng)論
0/150
提交評(píng)論