2022年青海師大二附中高三考前熱身數(shù)學(xué)試卷含解析_第1頁(yè)
2022年青海師大二附中高三考前熱身數(shù)學(xué)試卷含解析_第2頁(yè)
2022年青海師大二附中高三考前熱身數(shù)學(xué)試卷含解析_第3頁(yè)
2022年青海師大二附中高三考前熱身數(shù)學(xué)試卷含解析_第4頁(yè)
2022年青海師大二附中高三考前熱身數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的圖象可能為()A. B.C. D.2.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}3.把函數(shù)的圖象向右平移個(gè)單位,得到函數(shù)的圖象.給出下列四個(gè)命題①的值域?yàn)棰诘囊粋€(gè)對(duì)稱軸是③的一個(gè)對(duì)稱中心是④存在兩條互相垂直的切線其中正確的命題個(gè)數(shù)是()A.1 B.2 C.3 D.44.如圖,正方體的棱長(zhǎng)為1,動(dòng)點(diǎn)在線段上,、分別是、的中點(diǎn),則下列結(jié)論中錯(cuò)誤的是()A., B.存在點(diǎn),使得平面平面C.平面 D.三棱錐的體積為定值5.在平面直角坐標(biāo)系中,將點(diǎn)繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)到點(diǎn),設(shè)直線與軸正半軸所成的最小正角為,則等于()A. B. C. D.6.已知m,n是兩條不同的直線,,是兩個(gè)不同的平面,給出四個(gè)命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④7.設(shè),,,則()A. B. C. D.8.已知,,為圓上的動(dòng)點(diǎn),,過(guò)點(diǎn)作與垂直的直線交直線于點(diǎn),若點(diǎn)的橫坐標(biāo)為,則的取值范圍是()A. B. C. D.9.若函數(shù)有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的值為()A. B. C. D.10.拋物線的焦點(diǎn)為,點(diǎn)是上一點(diǎn),,則()A. B. C. D.11.現(xiàn)有甲、乙、丙、丁4名學(xué)生平均分成兩個(gè)志愿者小組到校外參加兩項(xiàng)活動(dòng),則乙、丙兩人恰好參加同一項(xiàng)活動(dòng)的概率為A. B. C. D.12.如圖所示,在平面直角坐標(biāo)系中,是橢圓的右焦點(diǎn),直線與橢圓交于,兩點(diǎn),且,則該橢圓的離心率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)常數(shù),如果的二項(xiàng)展開(kāi)式中項(xiàng)的系數(shù)為-80,那么______.14.曲線在點(diǎn)處的切線方程是__________.15.在平面直角坐標(biāo)系xOy中,己知直線與函數(shù)的圖象在y軸右側(cè)的公共點(diǎn)從左到右依次為,,…,若點(diǎn)的橫坐標(biāo)為1,則點(diǎn)的橫坐標(biāo)為_(kāi)_______.16.的展開(kāi)式中項(xiàng)的系數(shù)為_(kāi)______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)曲線在點(diǎn)處的切線斜率為.(i)求;(ii)若,求整數(shù)的最大值.18.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為:(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取得最大值時(shí)直線的直角坐標(biāo)方程.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在區(qū)間上的最小值為,求m的值.20.(12分)如圖,橢圓的左、右頂點(diǎn)分別為,,上、下頂點(diǎn)分別為,,且,為等邊三角形,過(guò)點(diǎn)的直線與橢圓在軸右側(cè)的部分交于、兩點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求四邊形面積的取值范圍.21.(12分)已知橢圓的短軸長(zhǎng)為,離心率,其右焦點(diǎn)為.(1)求橢圓的方程;(2)過(guò)作夾角為的兩條直線分別交橢圓于和,求的取值范圍.22.(10分)已知函數(shù)(,),.(Ⅰ)討論的單調(diào)性;(Ⅱ)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗(yàn)證求解.【詳解】因?yàn)?,所以是奇函?shù),故排除A,B,又,故選:C【點(diǎn)睛】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.2.D【解析】

解一元二次不等式化簡(jiǎn)集合,再由集合的交集運(yùn)算可得選項(xiàng).【詳解】因?yàn)榧希蔬x:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,屬于基礎(chǔ)題.3.C【解析】

由圖象變換的原則可得,由可求得值域;利用代入檢驗(yàn)法判斷②③;對(duì)求導(dǎo),并得到導(dǎo)函數(shù)的值域,即可判斷④.【詳解】由題,,則向右平移個(gè)單位可得,,的值域?yàn)?①錯(cuò)誤;當(dāng)時(shí),,所以是函數(shù)的一條對(duì)稱軸,②正確;當(dāng)時(shí),,所以的一個(gè)對(duì)稱中心是,③正確;,則,使得,則在和處的切線互相垂直,④正確.即②③④正確,共3個(gè).故選:C【點(diǎn)睛】本題考查三角函數(shù)的圖像變換,考查代入檢驗(yàn)法判斷余弦型函數(shù)的對(duì)稱軸和對(duì)稱中心,考查導(dǎo)函數(shù)的幾何意義的應(yīng)用.4.B【解析】

根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因?yàn)榉謩e是中點(diǎn),所以,故A正確;在B中,由于直線與平面有交點(diǎn),所以不存在點(diǎn),使得平面平面,故B錯(cuò)誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結(jié)合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點(diǎn)睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.5.A【解析】

設(shè)直線直線與軸正半軸所成的最小正角為,由任意角的三角函數(shù)的定義可以求得的值,依題有,則,利用誘導(dǎo)公式即可得到答案.【詳解】如圖,設(shè)直線直線與軸正半軸所成的最小正角為因?yàn)辄c(diǎn)在角的終邊上,所以依題有,則,所以,故選:A【點(diǎn)睛】本題考查三角函數(shù)的定義及誘導(dǎo)公式,屬于基礎(chǔ)題.6.D【解析】

根據(jù)面面垂直的判定定理可判斷①;根據(jù)空間面面平行的判定定理可判斷②;根據(jù)線面平行的判定定理可判斷③;根據(jù)面面垂直的判定定理可判斷④.【詳解】對(duì)于①,若,,,,兩平面相交,但不一定垂直,故①錯(cuò)誤;對(duì)于②,若,,則,故②正確;對(duì)于③,若,,,當(dāng),則與不平行,故③錯(cuò)誤;對(duì)于④,若,,,則,故④正確;故選:D【點(diǎn)睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎(chǔ)題.7.A【解析】

先利用換底公式將對(duì)數(shù)都化為以2為底,利用對(duì)數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【詳解】,,,因此,故選:A.【點(diǎn)睛】本題主要考查了利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.8.A【解析】

由題意得,即可得點(diǎn)M的軌跡為以A,B為左、右焦點(diǎn),的雙曲線,根據(jù)雙曲線的性質(zhì)即可得解.【詳解】如圖,連接OP,AM,由題意得,點(diǎn)M的軌跡為以A,B為左、右焦點(diǎn),的雙曲線,.故選:A.【點(diǎn)睛】本題考查了雙曲線定義的應(yīng)用,考查了轉(zhuǎn)化化歸思想,屬于中檔題.9.D【解析】

推導(dǎo)出函數(shù)的圖象關(guān)于直線對(duì)稱,由題意得出,進(jìn)而可求得實(shí)數(shù)的值,并對(duì)的值進(jìn)行檢驗(yàn),即可得出結(jié)果.【詳解】,則,,,所以,函數(shù)的圖象關(guān)于直線對(duì)稱.若函數(shù)的零點(diǎn)不為,則該函數(shù)的零點(diǎn)必成對(duì)出現(xiàn),不合題意.所以,,即,解得或.①當(dāng)時(shí),令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時(shí),函數(shù)與函數(shù)的圖象有三個(gè)交點(diǎn),不合乎題意;②當(dāng)時(shí),,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則函數(shù)有且只有一個(gè)零點(diǎn).綜上所述,.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù),考查函數(shù)圖象對(duì)稱性的應(yīng)用,解答的關(guān)鍵就是推導(dǎo)出,在求出參數(shù)后要對(duì)參數(shù)的值進(jìn)行檢驗(yàn),考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.10.B【解析】

根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因?yàn)?,所?故選B【點(diǎn)睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.11.B【解析】

求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動(dòng)的基本事件個(gè)數(shù)為,利用古典概型及其概率的計(jì)算公式,即可求解.【詳解】由題意,現(xiàn)有甲乙丙丁4名學(xué)生平均分成兩個(gè)志愿者小組到校外參加兩項(xiàng)活動(dòng),基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動(dòng)的基本事件個(gè)數(shù)為,所以乙丙兩人恰好參加同一項(xiàng)活動(dòng)的概率為,故選B.【點(diǎn)睛】本題主要考查了排列組合的應(yīng)用,以及古典概型及其概率的計(jì)算問(wèn)題,其中解答中合理應(yīng)用排列、組合的知識(shí)求得基本事件的總數(shù)和所求事件所包含的基本事件的個(gè)數(shù),利用古典概型及其概率的計(jì)算公式求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.12.A【解析】

聯(lián)立直線方程與橢圓方程,解得和的坐標(biāo),然后利用向量垂直的坐標(biāo)表示可得,由離心率定義可得結(jié)果.【詳解】由,得,所以,.由題意知,所以,.因?yàn)?所以,所以.所以,所以,故選:A.【點(diǎn)睛】本題考查了直線與橢圓的交點(diǎn),考查了向量垂直的坐標(biāo)表示,考查了橢圓的離心率公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用二項(xiàng)式定理的通項(xiàng)公式即可得出.【詳解】的二項(xiàng)展開(kāi)式的通項(xiàng)公式:,令,解得.∴,解得.故答案為:-2.【點(diǎn)睛】本小題主要考查根據(jù)二項(xiàng)式展開(kāi)式的系數(shù)求參數(shù),屬于基礎(chǔ)題.14.【解析】

利用導(dǎo)數(shù)的幾何意義計(jì)算即可.【詳解】由已知,,所以,又,所以切線方程為,即.故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本計(jì)算能力,要注意在某點(diǎn)處的切線與過(guò)某點(diǎn)的切線的區(qū)別,是一道容易題.15.1【解析】

當(dāng)時(shí),得,或,依題意可得,可求得,繼而可得答案.【詳解】因?yàn)辄c(diǎn)的橫坐標(biāo)為1,即當(dāng)時(shí),,所以或,又直線與函數(shù)的圖象在軸右側(cè)的公共點(diǎn)從左到右依次為,,所以,故,所以函數(shù)的關(guān)系式為.當(dāng)時(shí),(1),即點(diǎn)的橫坐標(biāo)為1,為二函數(shù)的圖象的第二個(gè)公共點(diǎn).故答案為:1.【點(diǎn)睛】本題考查三角函數(shù)關(guān)系式的恒等變換、正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力及思維能力,屬于中檔題.16.40【解析】

根據(jù)二項(xiàng)定理展開(kāi)式,求得r的值,進(jìn)而求得系數(shù).【詳解】根據(jù)二項(xiàng)定理展開(kāi)式的通項(xiàng)式得所以,解得所以系數(shù)【點(diǎn)睛】本題考查了二項(xiàng)式定理的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)在上增;在上減;(2)(i);(ii)2【解析】

(1)求導(dǎo)求出,對(duì)分類討論,求出的解,即可得出結(jié)論;(2)(i)由,求出的值;(ii)由(i)得所求問(wèn)題轉(zhuǎn)化為,恒成立,設(shè),,只需,根據(jù)的單調(diào)性,即可求解.【詳解】(1)當(dāng)時(shí),,即在上增;當(dāng)時(shí),,,,,即在上增;在上減;(2)(i),.(ⅱ),即,即,只需.當(dāng)時(shí),,在單調(diào)遞增,所以滿足題意;當(dāng)時(shí),,,,所以在上減,在上增,令,..在單調(diào)遞減,所以所以在上單調(diào)遞減,,綜上可知,整數(shù)的最大值為.【點(diǎn)睛】本題考查函數(shù)導(dǎo)數(shù)的綜合應(yīng)用,涉及函數(shù)的單調(diào)性、導(dǎo)數(shù)的幾何意義、極值最值、不等式恒成立,考查分類討論思想,屬于中檔題.18.(1)曲線,曲線.(2).【解析】

(1)用和消去參數(shù)即得的極坐標(biāo)方程;將兩邊同時(shí)乘以,然后由解得直角坐標(biāo)方程.(2)過(guò)極點(diǎn)的直線的參數(shù)方程為,代入到和:中,表示出即可求解.【詳解】解:由和,得,化簡(jiǎn)得故:將兩邊同時(shí)乘以,得因?yàn)?,所以得的直角坐?biāo)方程.(2)設(shè)直線的極坐標(biāo)方程由,得,由,得故當(dāng)時(shí),取得最大值此時(shí)直線的極坐標(biāo)方程為:,其直角坐標(biāo)方程為:.【點(diǎn)睛】考查直角坐標(biāo)方程、極坐標(biāo)方程、參數(shù)方程的互相轉(zhuǎn)化以及應(yīng)用圓的極坐標(biāo)方程中的幾何意義求距離的的最大值方法;中檔題.19.(1)見(jiàn)解析(2)【解析】

(1)先求導(dǎo),再對(duì)m分類討論,求出的單調(diào)性;(2)對(duì)m分三種情況討論求函數(shù)在區(qū)間上的最小值即得解.【詳解】(1)若,當(dāng)時(shí),;當(dāng)時(shí).,所以在上單調(diào)遞增,在上單調(diào)遞減若.在R上單調(diào)遞增若,當(dāng)時(shí),;當(dāng)時(shí).,所以在上單調(diào)遞增,在上單調(diào)遞減(2)由(1)可知,當(dāng)時(shí),在上單調(diào)遞增,則.則不合題意當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.則,即又因?yàn)閱握{(diào)遞增,且,故綜上,【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.20.(1);(2).【解析】

(1)根據(jù)坐標(biāo)和為等邊三角形可得,進(jìn)而得到橢圓方程;(2)①當(dāng)直線斜率不存在時(shí),易求坐標(biāo),從而得到所求面積;②當(dāng)直線的斜率存在時(shí),設(shè)方程為,與橢圓方程聯(lián)立得到韋達(dá)定理的形式,并確定的取值范圍;利用,代入韋達(dá)定理的結(jié)論可求得關(guān)于的表達(dá)式,采用換元法將問(wèn)題轉(zhuǎn)化為,的值域的求解問(wèn)題,結(jié)合函數(shù)單調(diào)性可求得值域;結(jié)合兩種情況的結(jié)論可得最終結(jié)果.【詳解】(1),,為等邊三角形,,橢圓的標(biāo)準(zhǔn)方程為.(2)設(shè)四邊形的面積為.①當(dāng)直線的斜率不存在時(shí),可得,,.②當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,設(shè),,聯(lián)立得:,,,.,,,,面積.令,則,,令,則,,在定義域內(nèi)單調(diào)遞減,.綜上所述:四邊形面積的取值范圍是.【點(diǎn)睛】本題考查直線與橢圓的綜合應(yīng)用問(wèn)題,涉及到橢圓方程的求解、橢圓中的四邊形面積的取值范圍的求解問(wèn)題;關(guān)鍵是能夠?qū)⑺竺娣e表示為關(guān)于某一變量的函數(shù),將問(wèn)題轉(zhuǎn)化為函數(shù)值域的求解問(wèn)題.21.(1);(2).【解析】

(1)由已知短軸長(zhǎng)求出,離心率求出關(guān)系,結(jié)合,即可求解;(2)當(dāng)直線的斜率都存在時(shí),不妨設(shè)直線的方程為,直線與橢圓方程聯(lián)立,利用相交弦長(zhǎng)公式求出,斜率為,求出,得到關(guān)于的表達(dá)式,根據(jù)表達(dá)式的特點(diǎn)用“”判別式法求出范圍,當(dāng)有一斜率不存在時(shí),另一條斜率為,根據(jù)弦長(zhǎng)公式,求出,即可求出結(jié)論.【詳解】(1)由得,又由得,則,故橢圓的方程為.(2)由(1)知,①當(dāng)直線的斜率都存在時(shí),由對(duì)稱性不妨設(shè)直線的方程為,由,,設(shè),則,則,由橢圓對(duì)稱性可設(shè)直線的斜率為,則,.令,則,當(dāng)時(shí),,當(dāng)時(shí),由得,所以,即,且.②當(dāng)直線的斜率其中一條不存在時(shí),根據(jù)對(duì)稱性不妨設(shè)設(shè)直線的方程為,斜率不存在,則,,此時(shí).若設(shè)的方程為,斜率不存在,則,綜上可

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論