版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線,為坐標(biāo)原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.2.函數(shù)f(x)=lnA. B. C. D.3.A. B. C. D.4.在菱形中,,,,分別為,的中點,則()A. B. C.5 D.5.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)6.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.57.“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件8.已知定義在上的可導(dǎo)函數(shù)滿足,若是奇函數(shù),則不等式的解集是()A. B. C. D.9.已知函數(shù)有兩個不同的極值點,,若不等式有解,則的取值范圍是()A. B.C. D.10.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a11.等比數(shù)列的前項和為,若,,,,則()A. B. C. D.12.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若恒成立,則的取值范圍是___________.14.?dāng)?shù)學(xué)家狄里克雷對數(shù)論,數(shù)學(xué)分析和數(shù)學(xué)物理有突出貢獻,是解析數(shù)論的創(chuàng)始人之一.函數(shù),稱為狄里克雷函數(shù).則關(guān)于有以下結(jié)論:①的值域為;②;③;④其中正確的結(jié)論是_______(寫出所有正確的結(jié)論的序號)15.已知函數(shù),則不等式的解集為____________.16.已知函數(shù)是定義在上的奇函數(shù),且周期為,當(dāng)時,,則的值為___________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,已知.(1)求角的大??;(2)若,求的面積.18.(12分)已知等比數(shù)列,其公比,且滿足,和的等差中項是1.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)若,是數(shù)列的前項和,求使成立的正整數(shù)的值.19.(12分)已知函數(shù).(1)求曲線在點處的切線方程;(2)若對任意的,當(dāng)時,都有恒成立,求最大的整數(shù).(參考數(shù)據(jù):)20.(12分)設(shè)函數(shù)其中(Ⅰ)若曲線在點處切線的傾斜角為,求的值;(Ⅱ)已知導(dǎo)函數(shù)在區(qū)間上存在零點,證明:當(dāng)時,.21.(12分)已知.(1)當(dāng)時,求不等式的解集;(2)若時不等式成立,求的取值范圍.22.(10分)在三棱柱中,四邊形是菱形,,,,,點M、N分別是、的中點,且.(1)求證:平面平面;(2)求四棱錐的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù),先確定出的長度,然后利用雙曲線定義將轉(zhuǎn)化為的關(guān)系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點睛】本題考查根據(jù)雙曲線中的長度關(guān)系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.2.C【解析】因為fx=lnx2-4x+4x-23=3.A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】本題正確選項:【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)的計算題.4.B【解析】
據(jù)題意以菱形對角線交點為坐標(biāo)原點建立平面直角坐標(biāo)系,用坐標(biāo)表示出,再根據(jù)坐標(biāo)形式下向量的數(shù)量積運算計算出結(jié)果.【詳解】設(shè)與交于點,以為原點,的方向為軸,的方向為軸,建立直角坐標(biāo)系,則,,,,,所以.故選:B.【點睛】本題考查建立平面直角坐標(biāo)系解決向量的數(shù)量積問題,難度一般.長方形、正方形、菱形中的向量數(shù)量積問題,如果直接計算較麻煩可考慮用建系的方法求解.5.C【解析】
根據(jù)并集的求法直接求出結(jié)果.【詳解】∵,∴,故選C.【點睛】考查并集的求法,屬于基礎(chǔ)題.6.C【解析】試題分析:由已知,-2a+i=1-bi,根據(jù)復(fù)數(shù)相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點:復(fù)數(shù)的代數(shù)運算,復(fù)數(shù)相等的充要條件,復(fù)數(shù)的模7.A【解析】
首先利用二倍角正切公式由,求出,再根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:∵,∴可解得或,∴“”是“”的充分不必要條件.故選:A【點睛】本題主要考查充分條件和必要條件的判斷,二倍角正切公式的應(yīng)用是解決本題的關(guān)鍵,屬于基礎(chǔ)題.8.A【解析】
構(gòu)造函數(shù),根據(jù)已知條件判斷出的單調(diào)性.根據(jù)是奇函數(shù),求得的值,由此化簡不等式求得不等式的解集.【詳解】構(gòu)造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù),所以當(dāng)時,,所以,所以.由得,所以,故不等式的解集為.故選:A【點睛】本小題主要考查構(gòu)造函數(shù)法解不等式,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.9.C【解析】
先求導(dǎo)得(),由于函數(shù)有兩個不同的極值點,,轉(zhuǎn)化為方程有兩個不相等的正實數(shù)根,根據(jù),,,求出的取值范圍,而有解,通過分裂參數(shù)法和構(gòu)造新函數(shù),通過利用導(dǎo)數(shù)研究單調(diào)性、最值,即可得出的取值范圍.【詳解】由題可得:(),因為函數(shù)有兩個不同的極值點,,所以方程有兩個不相等的正實數(shù)根,于是有解得.若不等式有解,所以因為.設(shè),,故在上單調(diào)遞增,故,所以,所以的取值范圍是.故選:C.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、最值來求參數(shù)取值范圍,以及運用分離參數(shù)法和構(gòu)造函數(shù)法,還考查分析和計算能力,有一定的難度.10.C【解析】
兩復(fù)數(shù)相等,實部與虛部對應(yīng)相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點睛】本題考查復(fù)數(shù)的概念,屬于基礎(chǔ)題.11.D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因為,所以有:是方程的二實根,又,,所以,故解得:,從而公比;那么,故選D.考點:等比數(shù)列.12.C【解析】
首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
求導(dǎo)得到,討論和兩種情況,計算時,函數(shù)在上單調(diào)遞減,故,不符合,排除,得到答案?!驹斀狻恳驗?,所以,因為,所以.當(dāng),即時,,則在上單調(diào)遞增,從而,故符合題意;當(dāng),即時,因為在上單調(diào)遞增,且,所以存在唯一的,使得.令,得,則在上單調(diào)遞減,從而,故不符合題意.綜上,的取值范圍是.故答案為:.【點睛】本題考查了不等式恒成立問題,轉(zhuǎn)化為函數(shù)的最值問題是解題的關(guān)鍵.14.②【解析】
根據(jù)新定義,結(jié)合實數(shù)的性質(zhì)即可判斷①②③,由定義求得比小的有理數(shù)個數(shù),即可確定④.【詳解】對于①,由定義可知,當(dāng)為有理數(shù)時;當(dāng)為無理數(shù)時,則值域為,所以①錯誤;對于②,因為有理數(shù)的相反數(shù)還是有理數(shù),無理數(shù)的相反數(shù)還是無理數(shù),所以滿足,所以②正確;對于③,因為,當(dāng)為無理數(shù)時,可以是有理數(shù),也可以是無理數(shù),所以③錯誤;對于④,由定義可知,所以④錯誤;綜上可知,正確的為②.故答案為:②.【點睛】本題考查了新定義函數(shù)的綜合應(yīng)用,正確理解題意是解決此類問題的關(guān)鍵,屬于中檔題.15.【解析】
,,分類討論即可.【詳解】由已知,,,若,則或解得或,所以不等式的解集為.故答案為:【點睛】本題考查分段函數(shù)的應(yīng)用,涉及到解一元二次不等式,考查學(xué)生的計算能力,是一道中檔題.16.【解析】
由題意可得:,周期為,可得,可求出,最后再求的值即可.【詳解】解:函數(shù)是定義在上的奇函數(shù),.由周期為,可知,,..故答案為:.【點睛】本題主要考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)利用正弦定理邊化角,再利用二倍角的正弦公式與正弦的和角公式化簡求解即可.(2)由(1)有,根據(jù)正弦定理可得,進而求得的值,再根據(jù)三角形的面積公式求解即可.【詳解】(1)由,得,得,由正弦定理得,顯然,同時除以,得.所以.所以.顯然,所以,解得.又,所以.(2)若,由正弦定理得,得,解得.又,所以.【點睛】本題主要考查了正余弦定理與面積公式在解三角形中的運用,需要根據(jù)題意用正弦定理進行邊角互化,再根據(jù)三角恒等變換進行化簡求解等.屬于中檔題.18.(Ⅰ).(Ⅱ).【解析】
(Ⅰ)由等差數(shù)列中項性質(zhì)和等比數(shù)列的通項公式,解方程可得首項和公比,可得所求通項公式;(Ⅱ),由數(shù)列的錯位相減法求和可得,解方程可得所求值.【詳解】(Ⅰ)等比數(shù)列,其公比,且滿足,和的等差中項是即有,解得:(Ⅱ)由(Ⅰ)知:則相減可得:化簡可得:,即為解得:【點睛】本題考查等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的錯位相減法求和,以及方程思想和運算能力,屬于中檔題.19.(1)(2)2【解析】
(1)先求得切點坐標(biāo),利用導(dǎo)數(shù)求得切線的斜率,由此求得切線方程.(2)對分成,兩種情況進行分類討論.當(dāng)時,將不等式轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的最小值(設(shè)為)的取值范圍,由的得在上恒成立,結(jié)合一元二次不等式恒成立,判別式小于零列不等式,解不等式求得的取值范圍.【詳解】(1)已知函數(shù),則處即為,又,,可知函數(shù)過點的切線為,即.(2)注意到,不等式中,當(dāng)時,顯然成立;當(dāng)時,不等式可化為令,則,,所以存在,使.由于在上遞增,在上遞減,所以是的唯一零點.且在區(qū)間上,遞減,在區(qū)間上,遞增,即的最小值為,令,則,將的最小值設(shè)為,則,因此原式需滿足,即在上恒成立,又,可知判別式即可,即,且可以取到的最大整數(shù)為2.【點睛】本小題主要考查利用導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究不等式恒成立問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.20.(Ⅰ);(Ⅱ)證明見解析【解析】
(Ⅰ)求導(dǎo)得到,,解得答案.(Ⅱ),故,在上單調(diào)遞減,在上單調(diào)遞增,,設(shè),證明函數(shù)單調(diào)遞減,故,得到證明.【詳解】(Ⅰ),故,,故.(Ⅱ),即,存在唯一零點,設(shè)零點為,故,即,在上單調(diào)遞減,在上單調(diào)遞增,故,設(shè),則,設(shè),則,單調(diào)遞減,,故恒成立,故單調(diào)遞減.,故當(dāng)時,.【點睛】本題考查了函數(shù)的切線問題,利用導(dǎo)數(shù)證明不等式,轉(zhuǎn)化為函數(shù)的最值是解題的關(guān)鍵.21.(1);(2)【解析】分析:(1)將代入函數(shù)解析式,求得,利用零點分段將解析式化為,然后利用分段函數(shù),分情況討論求得不等式的解集為;(2)根據(jù)題中所給的,其中一個絕對值符號可以去掉,不等式可以化為時,分情況討論即可求得結(jié)果.詳解:(1)當(dāng)時,,即故不等式的解集為.(2)當(dāng)時成立等價于當(dāng)時成立.若,則當(dāng)時;若,的解集為,所以,故.綜上,的取值范圍為.點睛:該題考查的是有關(guān)絕對值不等式的解法,以及含參的絕對值的式子在某個區(qū)間上恒成立求參數(shù)的取值范圍的問題,在解題的過程中,需要會用零點分段法將其化為分段函數(shù),從而將不等式轉(zhuǎn)化為多個不等式組來解決,關(guān)于第二問求參數(shù)的取值范圍時,可以應(yīng)用題中所給的自變量的范圍,去掉一個絕對值符號,之后
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024園林綠化工程土壤改良與植保服務(wù)合同
- 2024熱量表購銷合同范文
- 2024年度城市基礎(chǔ)設(shè)施建設(shè)與運營合同
- 2024年二手房定金合同示范文本
- 2024年度物流運輸合同運輸方式與時間安排
- 師說課文課件教學(xué)課件
- 2024年冷鮮電商物流配送服務(wù)合同
- 2024年度研發(fā)技術(shù)轉(zhuǎn)讓合同
- 2024年度建筑工程安全生產(chǎn)管理合同
- 2024年度BIM模型數(shù)據(jù)共享與交換合同
- 大批量傷員救治工作預(yù)案
- 第三章弘揚中國精神課件
- 幼兒園文化建設(shè)路徑探析
- 中考英語一般將來時和過去將來時專項講解
- GB/T 4292-2017氟化鋁
- 2023年類風(fēng)濕關(guān)節(jié)炎心臟損害的中醫(yī)治療
- 【公開課課件】高考英語讀后續(xù)寫10
- GB/T 12898-2009國家三、四等水準(zhǔn)測量規(guī)范
- GA/T 1068-2015刑事案件命名規(guī)則
- 自動化學(xué)科概論-學(xué)生版-東南大學(xué)-自動化學(xué)院課件
- 浙江省寧波市鎮(zhèn)海蛟川書院2022-2023七年級上學(xué)期數(shù)學(xué)期中試卷+答案
評論
0/150
提交評論