簡(jiǎn)單幾何體的表面積與體積基礎(chǔ)練習(xí)【新教材】2022年人教A版高中數(shù)學(xué)必修_第1頁(yè)
簡(jiǎn)單幾何體的表面積與體積基礎(chǔ)練習(xí)【新教材】2022年人教A版高中數(shù)學(xué)必修_第2頁(yè)
簡(jiǎn)單幾何體的表面積與體積基礎(chǔ)練習(xí)【新教材】2022年人教A版高中數(shù)學(xué)必修_第3頁(yè)
簡(jiǎn)單幾何體的表面積與體積基礎(chǔ)練習(xí)【新教材】2022年人教A版高中數(shù)學(xué)必修_第4頁(yè)
簡(jiǎn)單幾何體的表面積與體積基礎(chǔ)練習(xí)【新教材】2022年人教A版高中數(shù)學(xué)必修_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

簡(jiǎn)單幾何體的表面積與體積基礎(chǔ)練習(xí)一、單選題1.某中學(xué)開(kāi)展勞動(dòng)實(shí)習(xí),學(xué)習(xí)加工制作食品包裝盒.現(xiàn)有一張邊長(zhǎng)為6的正六邊形硬紙片,如圖所示,裁掉陰影部分,然后按虛線處折成高為3的正六棱柱無(wú)蓋包裝盒,則此包裝盒的體積為(

)A.

144

B.

72

C.

36

D.

242.已知長(zhǎng)方體ABCD?A1B1CA.

12π

B.

20π

C.

24π

D.

32π3.如圖,位于西安大慈恩寺的大雁塔,是唐代玄奘法師為保存經(jīng)卷佛像而主持修建的,是我國(guó)現(xiàn)存最早的四方樓閣式磚塔.塔頂可以看成一個(gè)正四棱錐,其側(cè)棱與底面所成的角為45°,則該正四棱錐的一個(gè)側(cè)面與底面的面積之比為(

)A.

32

B.

22

C.

334.用到球心的距離為1的平面去截球,以所得截面為底面,球心為頂點(diǎn)的圓錐體積為8π3A.

16π

B.

32π

C.

36π

D.

48π5.玉琮是一種內(nèi)圓外方的筒型玉器,它與玉璧、玉圭、玉璋、玉璜、玉琥被稱(chēng)為“六器”,是古人用于祭祀神祇的一種禮器.《周禮》中載有“以玉作六器,以禮天地四方,以蒼璧禮天,以黃琮禮地”等文.如圖為齊家文化玉琮,該玉琮中方內(nèi)空,形狀對(duì)稱(chēng),圓筒內(nèi)徑2.0cm,外徑2.4cm,筒高6.0cm,方高4.0A.

23.04?3.92π

B.

34.56?3.92π

C.

34.56?3.12π

D.

23.04?3.12π6.將長(zhǎng)、寬分別為4和3的長(zhǎng)方形ABCD沿對(duì)角線AC折成直二面角,得到四面體A?BCD,則四面體A?BCD的外接球的表面積為(

)A.

25π

B.

50π

C.

D.

10π7.已知各頂點(diǎn)都在一個(gè)球面上的正四棱柱(其底面是正方形,且側(cè)棱垂直于底面)高為4,體積為16,則這個(gè)球的表面積是(

)A.

16π

B.

20π

C.

24π

D.

32π8.已知正四棱錐P?ABCD的高為7,且AB=2,則正四棱錐P?ABCD的側(cè)面積為(

)A.

22

B.

4

C.

62

9.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中,將底面是直角三角形的直三棱柱(側(cè)棱垂直于底面的三棱柱)稱(chēng)之為“塹堵”.如圖,三棱柱ABC?A1B1C1為一個(gè)“塹堵”,底面△ABC是以AB為斜邊的直角三角形且AB=5,AC=3,點(diǎn)P在棱BBA.

45π2

B.

455π10.已知正方體ABCD?A1B1C1D1的棱長(zhǎng)為1,給出下列四個(gè)命題:①對(duì)角線AC1被平面A1A.

①②

B.

②④

C.

①②③

D.

①②④11.魯班鎖是中國(guó)傳統(tǒng)的智力玩具,起源于中國(guó)古代建筑中首創(chuàng)的榫卯結(jié)構(gòu),它的外觀是如圖所示的十字立方體,其上下、左右、前后完全對(duì)稱(chēng),六根完全一樣的正四棱柱體分成三組,經(jīng)90°榫卯起來(lái).若正四棱柱的高為6,底面正方形的邊長(zhǎng)為1,現(xiàn)將該魯班鎖放進(jìn)一個(gè)球形容器(容器壁的厚度忽略不計(jì)),則該球形容器表面積的最小值為(

)A.

41π

B.

42π

C.

43π

D.

44π12.圓錐和圓柱的底面半徑?高都是R,則圓錐的表面積和圓柱的表面積之比為(

)A.

(2+1):4

B.

2:2

C.

1:213.已知A,B,C為球O的球面上的三個(gè)點(diǎn),⊙O1為△ABC的外接圓,若⊙O1的面積為4πA.

64π

B.

48π

C.

36π14.某三棱柱的底面為正三角形,其三視圖如圖所示,該三棱柱的表面積為(

).

A.

6+3

B.

6+23

C.

12+315.如圖,在四棱錐P?ABCD中,PA=PB=PC=PD=2,底面ABCD是邊長(zhǎng)為2的正方形,點(diǎn)E是PC的中點(diǎn),過(guò)點(diǎn)A,E作棱錐的截面,分別與側(cè)棱PB,PD交于M,N兩點(diǎn),則四棱錐P?AMEN體積的最小值為(

)A.

223

B.

233

C.

16.已知三棱錐P?ABC中,PA⊥平面ABC,BC⊥平面PAB,若AB=BC=1,PA=2則此三棱錐的外接球的表面積為(

)A.

24π

B.

C.

D.

8π17.半徑為2的球O內(nèi)有一個(gè)內(nèi)接正三棱柱,則正三棱柱的側(cè)面積的最大值為(

)A.

93

B.

123

C.

16318.已知正四棱柱ABCD?A1B1C1D1的底面邊長(zhǎng)為1,高為2,M為B1C1A.

148

B.

124

C.

11219.如圖,長(zhǎng)方體ABCD?A1B1CA.

3

B.

4

C.

6

D.

1220.已知三棱錐A﹣BCD內(nèi)接于球O,且AD=BC=3,AC=BD=4,AB=CD=13,則三棱錐A﹣BCDA.

38π

B.

C.

76π

D.

19π二、解答題21.如圖,已知四棱臺(tái)的兩底面均為正方形,且邊長(zhǎng)分別為20?cm和10?cm,側(cè)面積為22.如圖,將棱長(zhǎng)為2的正方體ABCD?A1B(1)求該四面體的表面積;(2)求該四面體外接球的體積與棱切球的體積之比.23.已知A,B,C是球O的球面上三點(diǎn),且AB=AC=3,BC=33,D為該球面上的動(dòng)點(diǎn),球心O到平面ABC(1)求三角形ABC外接圓的面積;(2)求三棱錐D?ABC體積的最大值.

答案解析部分一、單選題1.【答案】B【解析】如圖:由正六邊形的每個(gè)內(nèi)角為2π3按虛線處折成高為3的正六棱柱,即BF=3所以BE=可得正六棱柱底邊邊長(zhǎng)AB=6?2×1=4,所以正六棱柱體積:V=6×1故答案為:B2.【答案】B【解析】如圖,O為B1C中點(diǎn),M為由題可得C1E=∴C又因?yàn)樵谌忮FB1?C1EC中,B1C所以外接球球心是B1設(shè)球的半徑為R,則2R=B所以球的表面積S=4πR故答案為:B.3.【答案】D【解析】塔頂是正四棱錐P?ABCD,如圖,PO是正四棱錐的高,

設(shè)底面邊長(zhǎng)為a,底面積為S1=AO=22a,∠PAO=45°,∴PA=2×所以S2故答案為:D.4.【答案】C【解析】設(shè)球的半徑為R,圓錐的底面半徑為r,因?yàn)榍蛐牡浇孛娴木嚯x為1,所以有:r2則題中圓錐體積V=13×1×(R2故答案為:C5.【答案】D【解析】由圖可知,組合體由圓柱、長(zhǎng)方體構(gòu)成,組合體的體積為V=2×π×(故答案為:D6.【答案】A【解析】取AC的中點(diǎn),連接OB、OD,如下圖所示:由題意AC=3因?yàn)椤螦BC=∠ADC=90°,O為AC的中點(diǎn),所以O(shè)B=OD=12AC=OA=OC=52,所以O(shè)因此,四面體A?BCD的外接球的表面積為4πR故答案為:A.7.【答案】C【解析】依題意正四棱柱的體對(duì)角線BD1是其外接球的直徑,BD如圖:依題意設(shè)AB=BC=x,則正四棱柱的體積為:4x2=16,解得所以外接球的直徑2R=x所以外接球的半徑R=6,則這個(gè)球的表面積是4π故答案為:C.8.【答案】D【解析】正四棱錐的底面邊長(zhǎng)為2,高為7,則側(cè)面的高為?=(所以側(cè)面積為S=4×1故答案為:D9.【答案】D【解析】解法一:由“塹堵”的定義可知,△ABC為直角三角形,故BC=A易知AC⊥PC1,又PC⊥PC所以PC1⊥平面APC,而AP?平面APC設(shè)BB1=z,BP=t則AP=AB2+BP由AP⊥PC1,得9+z所以PC所以S≥241+2當(dāng)且僅當(dāng)t2=400t2此時(shí)AP=25設(shè)三棱錐P?ABC的外接球半徑為R,因?yàn)锳C⊥CP,AB⊥BP,故線段AP為外接球的直徑,故所求外接球的表面積S=4π×故答案為:D.解法二:令∠PCB=θ=∠C1PB1,則C又因?yàn)锳C⊥平面CBB1C1,所以所以C1P⊥平面ACP,所以△APC1的面積S=當(dāng)且僅當(dāng)100tan2θ此時(shí)tanθ=52在三棱錐P?ABC中,因?yàn)椤螦CP=∠ABP=90°,取AP中點(diǎn)為O,則OC=OB=1故O為三棱錐P?ABC的外接球的球心,所以AP為外接球直徑,S球O故答案為:D.10.【答案】D【解析】①如圖所示,假設(shè)對(duì)角線AC與平面A1BD相交于點(diǎn)可得AM⊥平面A1BD,所以解得AM=33=13AC②易得正方體的內(nèi)切球、與各條棱相切的球、正方體的外接球的半徑分別為12,232,因此表面積之比為4π③VC1?A1④正方體與以A為球心,1為半徑的球的公共部分的體積V=1故答案為:D.11.【答案】A【解析】由題意,該球形容器的半徑的最小值為并在一起的兩個(gè)長(zhǎng)方體體對(duì)角線的一半,即為12∴該球形容器體積的最小值為:4π×(故答案為:A.12.【答案】A【解析】由題意圓錐的全面積為:πR圓柱的全面積為:2π所以,圓錐的全面積與圓柱的全面積之比為:1+故答案為:A13.【答案】A【解析】設(shè)圓O1得πr由正弦定理可得AB=2rsin∴OO1=AB=23,根據(jù)圓截面性質(zhì)∴OO∴球O的表面積S=4πR故答案為:A14.【答案】D【解析】由題意可得,三棱柱的上下底面為邊長(zhǎng)為2的等邊三角形,側(cè)面為三個(gè)邊長(zhǎng)為2的正方形,則其表面積為:S=3×(2×2)+2×(1故答案為:D.15.【答案】D【解析】如圖所示,設(shè)∠PHN=α,則∠PHM=180°?α,設(shè)三棱錐M?PAE的高為?1,三棱錐由題得AC=2+2=2所以S由題得VP?AMEN因?yàn)镻B=PD=2,OB=OD=1,PO⊥平面ABCD,所以∠DPO=∠BPO=30°,所以?1在△PHN中,由正弦定理得PN=sinα×PH在△PHM中,由正弦定理得PM=sinα×PH所以?1+?2=12(sinα×PH在△PHE中,PEPH所以?1+?2=33當(dāng)α=90°時(shí),?1+?2取最小值故答案為:D.16.【答案】C【解析】由題,可將三棱錐P?ABC補(bǔ)成一個(gè)長(zhǎng)方體,那么三棱錐外接球的直徑為長(zhǎng)方體的體對(duì)角線,即直徑為PC=12+故答案為:C17.【答案】B【解析】如圖所示.設(shè)正三棱柱上下底面的中心分別為O1,O2,底面邊長(zhǎng)與高分別為在RtΔOAO2中,?∵S=3x?,∴S當(dāng)且僅當(dāng)x=6時(shí)取等號(hào),此時(shí)S=12故答案為:B.18.【答案】B【解析】取C1D1的中點(diǎn)G,C1C故MG//B1D1又MG?平面A1BD,BD?∴MG//平面A1BD,同理MN//∴平面MQN//平面A∴平面MQN即為平面α,體積較小的幾何體為三棱錐N?MQ由題意:M所以三棱錐N?MQC1故答案為:B19.【答案】B【解析】因?yàn)殚L(zhǎng)方體ABCD?A1B1C所以BC?CD?CC三棱錐E-BCD的體積是1=1故答案為:B.20.【答案】D【解析】由三棱錐對(duì)棱相等,在長(zhǎng)方體中可構(gòu)造三棱錐,如圖:設(shè)長(zhǎng)方體的長(zhǎng)寬高分別為a,b,c,外接球的半徑為R,則(2R)2由已知得{a∴a∴S=4πR故選:D二、解答題21.【答案】解:取A1B1的中點(diǎn)E1,AB的中點(diǎn)E,上、下底面的中心O1∵s側(cè)∴EE在直角梯形EOOO1E1∴O1故該四棱臺(tái)的體積為V=1【解析】取A1B1的中點(diǎn)E1,AB的中點(diǎn)E,上、下底面的中心22.【答案】(1)解:由已知可知四面體是

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論