版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,D、E分別是AB、AC上兩點,CD與BE相交于點O,下列條件中不能使△ABE和△ACD相似的是()A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB2.河堤橫斷面如圖所示,堤高BC=6米,迎水坡AB的坡比為1:,則AB的長為A.12米 B.4米 C.5米 D.6米3.如圖,已知點是第一象限內橫坐標為2的一個定點,軸于點,交直線于點,若點是線段上的一個動點,,,點在線段上運動時,點不變,點隨之運動,當點從點運動到點時,則點運動的路徑長是()A. B. C.2 D.4.如圖,正比例函數y1=k1x和反比例函數的圖象交于A(﹣1,2)、B(1,﹣2)兩點,若y1<y2,則x的取值范圍是()A.x<﹣1或x>1 B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>15.方程的解是()A. B. C., D.,6.下列關于一元二次方程(,是不為的常數)的根的情況判斷正確的是()A.方程有兩個相等的實數根 B.方程有兩個不相等的實數根C.方程沒有實數根 D.方程有一個實數根7.如圖,在Rt△ABC中,∠ACB=90°,如果AC=3,AB=5,那么sinB等于()A. B. C. D.8.小軍旅行箱的密碼是一個六位數,由于他忘記了密碼的末位數字,則小軍能一次打開該旅行箱的概率是()A. B. C. D.9.已知⊙O的半徑為3cm,線段OA=5cm,則點A與⊙O的位置關系是()A.A點在⊙O外 B.A點在⊙O上 C.A點在⊙O內 D.不能確定10.若,設,,,則、、的大小順序為()A. B. C. D.11.邊長為2的正六邊形的面積為()A.6 B.6 C.6 D.12.如圖,從一塊半徑為的圓形鐵皮上剪出一個圓心角是的扇形,則此扇形圍成的圓錐的側面積為()A. B. C. D.二、填空題(每題4分,共24分)13.若兩個相似三角形的面積比為1∶4,則這兩個相似三角形的周長比是__________.14.一個口袋中裝有2個完全相同的小球,它們分別標有數字1,2,從口袋中隨機摸出一個小球記下數字后放回,搖勻后再隨機摸出一個小球,則兩次摸出小球的數字和為偶數的概率是.15.在某一個學校的運動俱樂部里面有三大筐數量相同的球,甲每次從第一個大筐中取出9個球;乙每次從第二個大筐中取出7個球;丙則是每次從第三個大筐中取出5個球.到后來甲、乙、丙三人都記不清各自取過多少次球了,于是管理人員查看發(fā)現第一個大筐中還剩下7個球,第二個大筐還剩下4個球,第三個大筐還剩下2個球,那么根據上述情況可以推知甲至少取了______次.16.如圖,六邊形ABCDEF是正六邊形,曲線FK1K2K3K4K5K6K7…叫做“正六邊形的漸開線”,其中弧FK1、弧K1K2、弧K2K3、弧K3K4、弧K4K5、弧K5K6、…的圓心依次按點A、B、C、D、E、F循環(huán),其弧長分別為l1、l2、l3、l4、l5、l6、….當AB=1時,l3=________,l2019=_________.17.如圖,一輛小車沿著坡度為的斜坡從點A向上行駛了50米到點B處,則此時該小車離水平面的垂直高度為_____________.18.在平面直角坐標系中,將點(-b,-a)稱為點(a,b)的“關聯(lián)點”(例如點(-2,-1)是點(1,2)的“關聯(lián)點”).如果一個點和它的“關聯(lián)點”在同一象限內,那么這一點在第_______象限.三、解答題(共78分)19.(8分)(1)如圖1,在平行四邊形ABCD中,點E1,E2是AB三等分點,點F1,F2是CD三等分點,E1F1,E2F2分別交AC于點G1,G2,求證:AG1=G1G2=G2C.(2)如圖2,由64個邊長為1的小正方形組成的一個網格圖,線段MN的兩個端點在格點上,請用一把無刻度的尺子,畫出線段MN三等分點P,Q.(保留作圖痕跡)20.(8分)如圖1,在中,是的直徑,交于點,過點的直線交于點,交的延長線于點.(1)求證:是的切線;(2)若,試求的長;(3)如圖2,點是弧的中點,連結,交于點,若,求的值.21.(8分)如圖,已知拋物線C1交直線y=3于點A(﹣4,3),B(﹣1,3),交y軸于點C(0,6).(1)求C1的解析式.(2)求拋物線C1關于直線y=3的對稱拋物線的解析式;設C2交x軸于點D和點E(點D在點E的左邊),求點D和點E的坐標.(3)將拋物線C1水平向右平移得到拋物線C3,記平移后點B的對應點B′,若DB平分∠BDE,求拋物線C3的解析式.(4)直接寫出拋物線C1關于直線y=n(n為常數)對稱的拋物線的解析式.22.(10分)如圖,在△ABC中,點O在邊AC上,⊙O與△ABC的邊BC,AB分別相切于C,D兩點,與邊AC交于E點,弦CF與AB平行,與DO的延長線交于M點.(1)求證:點M是CF的中點;(2)若E是的中點,BC=a,①求的弧長;②求的值.23.(10分)如圖,在平面直角坐標系中,拋物線的頂點坐標為,與軸交于點,與軸交于點,.(1)求二次函數的表達式;(2)過點作平行于軸,交拋物線于點,點為拋物線上的一點(點在上方),作平行于軸交于點,當點在何位置時,四邊形的面積最大?并求出最大面積.24.(10分)如圖,某市有一塊長為(3a+b)米、寬為(2a+b)米的長方形地,規(guī)劃部門計劃將陰影部分進行綠化,中間將修建一座邊長為(a+b)米的正方形雕像.(1)試用含a、b的式子表示綠化部分的面積(結果要化簡).(2)若a=3,b=2,請求出綠化部分的面積.25.(12分)如圖,已知,點、坐標分別為、.(1)把繞原點順時針旋轉得,畫出旋轉后的;(2)在(1)的條件下,求點旋轉到點經過的路徑的長.26.已知:如圖,平行四邊形,是的角平分線,交于點,且,;求的度數.
參考答案一、選擇題(每題4分,共48分)1、C【解析】試題分析:∵∠A=∠A,∴當∠B=∠C或∠ADC=∠AEB或AD:AC=AE:AB時,△ABE和△ACD相似.故選C.考點:相似三角形的判定.2、A【分析】試題分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故選A.【詳解】請在此輸入詳解!3、D【分析】根據題意利用相似三角形可以證明線段就是點運動的路徑(或軌跡),又利用∽求出線段的長度,即點B運動的路徑長.【詳解】解:由題意可知,,點在直線上,軸于點,則為頂角30度直角三角形,.如下圖所示,設動點在點(起點)時,點的位置為,動點在點(終點)時,點的位置為,連接,∵,∴又∵,∴(此處也可用30°角的)∴∽,且相似比為,∴現在來證明線段就是點運動的路徑(或軌跡).如圖所示,當點運動至上的任一點時,設其對應的點為,連接,,∵,∴又∵,∴∴∽∴又∵∽∴∴∴點在線段上,即線段就是點運動的路徑(或軌跡).綜上所述,點運動的路徑(或軌跡)是線段,其長度為.故選:【點睛】本題考查坐標平面內由相似關系確定的點的運動軌跡,難度很大.本題的要點有兩個:首先,確定點B的運動路徑是本題的核心,這要求考生有很好的空間想象能力和分析問題的能力;其次,由相似關系求出點B運動路徑的長度,可以大幅簡化計算,避免陷入坐標關系的復雜運算之中.4、D【解析】反比例函數與一次函數的交點問題.根據圖象找出直線在雙曲線下方的x的取值范圍:由圖象可得,﹣1<x<0或x>1時,y1<y1.故選D.5、C【分析】先把從方程的右邊移到左邊,并把兩邊都除以4化簡,然后用因式分解法求解即可.【詳解】∵,∴,∴,∴,∴,.故選C.【點睛】本題考查了一元二次方程的解法,常用的方法有直接開平方法、配方法、因式分解法、求根公式法,靈活選擇合適的方法是解答本題的關鍵.6、B【分析】首先用表示出根的判別式,結合非負數的性質即可作出判斷.【詳解】由題可知二次項系數為,一次項系數為,常數項為,,是不為的常數,,方程有兩個不相等的實數根,故選:B.【點睛】本題主要考查了根的判別式的知識,解答此題要掌握一元二次方程根的情況與判別式△的關系:①△>0?方程有兩個不相等的實數根;②△=0?方程有兩個相等的實數根③△<0?方程沒有實數根.7、A【解析】直接利用銳角三角函數關系得出sinB的值.【詳解】∵在Rt△ABC中,∠ACB=90°,AC=3,AB=5,∴sinB=故選A.【點睛】此題主要考查了銳角三角函數關系,正確把握定義是解題關鍵.8、A【解析】∵密碼的末位數字共有10種可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴當他忘記了末位數字時,要一次能打開的概率是.故選A.9、A【詳解】解:∵5>3∴A點在⊙O外故選A.【點睛】本題考查點與圓的位置關系.10、B【分析】根據,設x=1a,y=7a,z=5a,進而代入A,B,C分別求出即可.【詳解】解:∵,設x=1a,y=7a,z=5a,
∴=,
==1,
==1.
∴A<B<C.
故選:B.【點睛】本題考查了比例的性質,根據比例式用同一個未知數得出x,y,z的值進而求出是解題的關鍵.11、A【解析】首先根據題意作出圖形,然后可得△OBC是等邊三角形,然后由三角函數的性質,求得OH的長,繼而求得正六邊形的面積.【詳解】解:如圖,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,∴∠BOC=×360°=60°,∵OB=0C,∴△OBC是等邊三角形,∴BC=OB=OC=2,∴它的半徑為2,邊長為2;∵在Rt△OBH中,OH=OB?sin60°=2×,∴邊心距是:;∴S正六邊形ABCDEF=6S△OBC=6××2×=6.故選:A.【點睛】本題考查圓的內接正六邊形的性質、正多邊形的內角和、等邊三角形的判定與性質以及三角函數等知識.此題難度不大,注意掌握數形結合思想的應用.12、A【分析】連接OB、OC和BC,過點O作OD⊥BC于點D,然后根據同弧所對的圓周角是圓心角的一半、等邊三角形判定和垂徑定理可得∠BOC=2∠BAC=120°,△ABC為等邊三角形,BC=2BD,然后根據銳角三角函數即可求出BD,從而求出BC和AB,然后根據扇形的面積公式計算即可.【詳解】解:連接OB、OC和BC,過點O作OD⊥BC于點D由題意可得:OB=OC=20cm,∠BAC=60°,AB=AC∴∠BOC=2∠BAC=120°,△ABC為等邊三角形,BC=2BD∴∠OBC=∠OCB=(180°-∠BOC)=30°,AB=AC=BC在Rt△OBD中,BD=OB·cos∠OBD=cm∴BC=2BD=cm∴AB=BC=cm∴圓錐的側面積=S扇形BAC=故選A.【點睛】此題考查的是圓周角定理、垂徑定理、等邊三角形的判定及性質、銳角三角函數和求圓錐側面積,掌握圓周角定理、垂徑定理、等邊三角形的判定及性質、銳角三角函數和扇形的面積公式是解決此題的關鍵.二、填空題(每題4分,共24分)13、【解析】試題分析:∵兩個相似三角形的面積比為1:4,∴這兩個相似三角形的相似比為1:1,∴這兩個相似三角形的周長比是1:1,故答案為1:1.考點:相似三角形的性質.14、.【解析】試題分析:如圖所示,∵共有4種結果,兩次摸出小球的數字和為偶數的有2次,∴兩次摸出小球的數字和為偶數的概率==.故答案為.考點:列表法與樹狀圖法.15、2【分析】設每框球的總數為k,甲取了a次,乙取了b次,丙取了c次.根據題意得可列方程k=9a+7=7b+4=5c+2(k,a,b,c都是正整數),然后根據整除的性質解答即可.【詳解】設每框球的總數為k,甲取了a次,乙取了b次,丙取了c次.根據題意得:k=9a+7=7b+4=5c+2(k,a,b,c都是正整數)∴9a+7=5c+2,∴9a=5(c-1),∴a是5的倍數.不妨設a=5m(m為正整數),∴k=45m+7=7b+4,∴b=,∵b和m都是正整數,∴m的最小值為1.∴a=5m=2.故答案為:2.【點睛】本題考查了三元一次方程的應用,解答本題的關鍵是明確題意,列出相應的者方程,會根據整除性進一步設未知數.16、π673π【分析】用弧長公式,分別計算出l1,l2,l3,…的長,尋找其中的規(guī)律,確定l2019的長.【詳解】解:根據題意得:l1=,l2=,l3=,則l2019=.故答案為:π;673π.【點睛】本題考查的是弧長的計算,先用公式計算,找出規(guī)律,則可求出ln的長.17、2【分析】設出垂直高度,表示出水平距離,利用勾股定理求解即可.【詳解】設此時該小車離水平面的垂直高度為x米,則水平前進了x米.根據勾股定理可得:x2+(x)2=1.解得x=2.即此時該小車離水平面的垂直高度為2米.故答案為:2.【點睛】考查了解直角三角形的應用?坡度坡角問題,此題的關鍵是熟悉且會靈活應用公式:tan(坡度)=垂直高度÷水平寬度,綜合利用了勾股定理.18、二、四.【解析】試題解析:根據關聯(lián)點的特征可知:如果一個點在第一象限,它的關聯(lián)點在第三象限.如果一個點在第二象限,它的關聯(lián)點在第二象限.如果一個點在第三象限,它的關聯(lián)點在第一象限.如果一個點在第四象限,它的關聯(lián)點在第四象限.故答案為二,四.三、解答題(共78分)19、(1)見解析;(2)見解析【分析】(1)利用平行線分線段成比例定理證明即可.(2)利用(1)中結論,構造平行四邊形解決問題即可.【詳解】解:(1)證明:如圖1中,∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,AD∥BC,∵DF1=CD,AE1=AB,∴DF1=AE1,∴四邊形ADF1E1是平行四邊形,∴AD∥E1F1,∴E1G1∥BC,∴,同法可證:,∴AG1=CG2=AC,∴AG1=G1G2=G2C.(2)如圖,點P,Q即為所求.【點睛】本題主要考查了平行四邊形的性質,平行線分線段成比例定理,掌握平行四邊形的性質,平行線分線段成比例定理是解題的關鍵.20、(1)證明見解析(2)(3)【分析】(1)連接半徑,根據已知條件結合圓的基本性質可推出,即,即可得證結論;(2)設,根據已知條件列出關于的方程、解方程即可得到圓心角,再求得半徑,然后利用弧長公式即可得解;(3)由,設,然后根據已知條件利用圓的一些性質、勾股定理以及三角形的不同求法分別表示出、,再利用平行線的判定以及相似三角形的判定和性質即可求得結論.【詳解】解:(1)連結,如圖:∵是的直徑∴∴∵∴∵∴∴∵在圓上∴是的切線.(2)設∵∴∴∵在中,∴∴∴∵∴∴連結,過作于點,如圖:∵點是的中點∴∴設∴∴∴∵在中,∴∵,∴∴∴.故答案是:(1)證明見解析(2)(3)【點睛】本題考查了圓的相關性質、切線的判定、等腰三角形的判定和性質、平行線的判定和性質、相似三角形的判定和性質、直角三角形的相關性質、銳角三角函數、三角形的外角性質以及弧長的計算公式等,綜合性較強,但難度不大屬中檔題型.21、(1)C1的解析式為y=x2+x+1;(2)拋物線C2的解析式為y=﹣x2﹣x,D(﹣5,0),E(0,0);(3)拋物線C3的解析式為y=;(4)y=x2x+2n﹣1.【分析】(1)設拋物線C1經的解析式為y=ax2+bx+c,將點A、B、C的坐標代入求解即可得到解析式;(2)先求出點C關于直線y=3的對稱點的坐標為(0,0),設拋物線C2的解析式為y=a1x2+b1x+c1,即可求出答案;(3)如圖,根據平行線的性質及角平分線的性質得到BB′=DB,利用勾股定理求出DB的長度即可得到拋物線平移的距離,由此得到平移后的解析式;(4)設拋物線C1關于直線y=n(n為常數)對稱的拋物線的解析式為y=mx+nx+k,根據對稱性得到m、n的值,再利用對稱性得到新函數與y軸交點坐標得到k的值,由此得到函數解析式.【詳解】(1)設拋物線C1經的解析式為y=ax2+bx+c,∵拋物線C1經過點A(﹣4,3),B(﹣1,3),C(0,1).∴,解得,∴C1的解析式為y=x2+x+1;(2)∵C點關于直線y=3的對稱點為(0,0),設拋物線C2的解析式為y=a1x2+b1x+c1,∴,解得,∴拋物線C2的解析式為y=﹣x2﹣x;令y=0,則﹣x2﹣x=0,解得x1=0,x2=﹣5,∴D(﹣5,0),E(0,0);(3)如圖,∵DB′平分∠BDE,∴∠BDB′=∠ODB′,∵AB∥x軸,∴∠BB′D=∠ODB′,∴∠BDB′=∠BB′D,∴BB′=DB,∵BD==5,∴將拋物線C1水平向右平移5個單位得到拋物線C3,∵C1的解析式為y=x2+x+1=(x+)2+,∴拋物線C3的解析式為y=(x+﹣5)2+=;(4)設拋物線C1關于直線y=n(n為常數)對稱的拋物線的解析式為y=mx+nx+k,根據對稱性得:新拋物線的開口方向與原拋物線的開口方向相反,開口大小相同,故m=-,對稱軸沒有變化,故n=-,當n>1時,n+(n-1)=2n-1,故新拋物線與y軸的交點為(0,2n-1),當n<1時,n-(1-n)=2n-1,新拋物線與y軸的交點為(0,2n-1),∴k=2n-1,∴拋物線C1關于直線y=n(n為常數)對稱的拋物線的解析式為:y=﹣x2﹣x+2n﹣1.【點睛】此題考查待定系數法求拋物線的解析式,拋物線的對稱性,拋物線平移的性質,解題中確定變化后的拋物線的特殊點的坐標是解題的關鍵.22、(1)見解析;(2)①πa;②=1.【分析】(1)由切線的性質可得∠ACB=∠ODB=90°,由平行線的性質可得OM⊥CF,由垂徑定理可得結論;(2)①由題意可證△BCD是等邊三角形,可得∠B=60°,由直角三角形的性質可得AB=2a,AC=a,AD=a,通過證明△ADO∽△ACB,可得,可求DO的長,由弧長公式可求解;②由直角三角形的性質可求AO=a,可得AE的長,即可求解.【詳解】證明:(1)∵⊙O與△ABC的邊BC,AB分別相切于C,D兩點,∴∠ACB=∠ODB=90°,∵CF∥AB,∴∠OMF=∠ODB=90°,∴OM⊥CF,且OM過圓心O,∴點M是CF的中點;(2)①連接CD,DF,OF,∵⊙O與△ABC的邊BC,AB分別相切于C,D兩點,∴BD=BC,∵E是的中點,∴,∴∠DCE=∠FCE,∵AB∥CF,∴∠A=∠ECF=∠ACD,∴AD=CD,∵∠A+∠B=90°,∠ACD+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,且BD=BC,∴BD=BC=CD,∴△BCD是等邊三角形,∴∠B=60°,∴∠A=30°=∠ECF=∠ACD,∴∠DCF=60°,∴∠DOF=120°,∵BC=a,∠A=30°,∴AB=2a,AC=a,∴AD=a,∵∠A=∠A,∠ADO=∠ACB=90°,∴△ADO∽△ACB,∴,∴∴DO=a,∴的弧長==πa;②∵∠A=30°,OD⊥AB,∴AO=2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年氮氧化鋁晶體(ALON)項目綜合評估報告
- 2024年建筑工程施工許可辦理合同
- 2024年房屋保證個人借款合同
- 2024年度新材料研發(fā)與產業(yè)化合同
- 2024年供應鏈管理合同詳細規(guī)定及標的
- 2024年店面裝潢簡單合同
- 2024年二手廠房買賣合同
- 人力資源經理工作計劃(9篇)
- 2024年技術開發(fā)合同:虛擬現實游戲的設計與開發(fā)
- 2024年度加油加氣站特許經營合同
- 2024中國鐵塔集團湖南分公司招聘24人高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- (高清版)JT∕T 1402-2022 交通運輸行政執(zhí)法基礎裝備配備及技術要求
- 中華聯(lián)合保險集團股份有限公司行測筆試題庫2024
- 印刷服務 投標方案(技術方案)
- 必修一《數據與計算》復習提綱與練習題
- 三級公立醫(yī)院績效考核微創(chuàng)手術目錄(2022版)
- 危險駕駛罪課件講解
- HJ 704-2014 土壤 有效磷的測定 碳酸氫鈉浸提-鉬銻抗分光光度法
- 四年級寒假奧數培優(yōu)講義-4-04-倒推法解題4-講義-教師
- 教師心理健康B證心得體會7篇
- DZ∕T 0317-2018 陸上石油天然氣開采業(yè)綠色礦山建設規(guī)范(正式版)
評論
0/150
提交評論