2023屆山西省運城市數(shù)學九上期末聯(lián)考模擬試題含解析_第1頁
2023屆山西省運城市數(shù)學九上期末聯(lián)考模擬試題含解析_第2頁
2023屆山西省運城市數(shù)學九上期末聯(lián)考模擬試題含解析_第3頁
2023屆山西省運城市數(shù)學九上期末聯(lián)考模擬試題含解析_第4頁
2023屆山西省運城市數(shù)學九上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.已知一個三角形的兩個內(nèi)角分別是40°,60°,另一個三角形的兩個內(nèi)角分別是40°,80°,則這兩個三角形()A.一定不相似 B.不一定相似 C.一定相似 D.不能確定2.表中所列的7對值是二次函數(shù)圖象上的點所對應的坐標,其中x……y…7m14k14m7…根據(jù)表中提供的信息,有以下4個判斷:①;②;③當時,y的值是k;④其中判斷正確的是()A.①②③ B.①②④ C.①③④ D.②③④3.下列事件中,屬于必然事件的是()A.方程無實數(shù)解B.在某交通燈路口,遇到紅燈C.若任取一個實數(shù)a,則D.買一注福利彩票,沒有中獎4.如圖,一次函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,點P在以C(﹣2,0)為圓心,1為半徑的⊙C上,Q是AP的中點,已知OQ長的最大值為,則k的值為()A. B. C. D.5.如圖,某水庫堤壩橫斷面迎水坡AB的坡比是1:,堤壩高BC=50m,則應水坡面AB的長度是()A.100m B.100m C.150m D.50m6.關(guān)于x的一元二次方程x2﹣2x﹣m=0有實根,則m的值可能是()A.﹣4 B.﹣3 C.﹣2 D.﹣17.下列說法中,不正確的是()A.圓既是軸對稱圖形又是中心對稱圖形 B.圓有無數(shù)條對稱軸C.圓的每一條直徑都是它的對稱軸 D.圓的對稱中心是它的圓心8.在正方形網(wǎng)格中,△ABC的位置如圖所示,則cos∠B的值為(

)A. B. C. D.19.如圖所示,在邊長為1的小正方形網(wǎng)格中,兩個三角形是位似圖形,則它們的位似中心是()A.點O B.點P C.點M D.點N10.已知x1,x2是一元二次方程的兩根,則x1+x2的值是()A.0 B.2 C.-2 D.4二、填空題(每小題3分,共24分)11.計算的結(jié)果是_____.12.在?ABCD中,E是AD上一點,且點E將AD分為2:3的兩部分,連接BE、AC相交于F,則是_______.13.如圖,在菱形ABCD中,∠B=60°,AB=2,M為邊AB的中點,N為邊BC上一動點(不與點B重合),將△BMN沿直線MN折疊,使點B落在點E處,連接DE、CE,當△CDE為等腰三角形時,BN的長為_____.14.方程x2=2的解是.15.如圖,在正方形和正方形中,點和點的坐標分別為,,則兩個正方形的位似中心的坐標是___________.16.如圖,四邊形ABCD中,AB∥CD,∠B=90°,AB=1,CD=2,BC=3,點P為BC邊上一動點,若△PAB與△PCD是相似三角形,則BP的長為_____________17.如圖,在平面直角坐標系中,點的坐標分別是,,若二次函數(shù)的圖象過兩點,且該函數(shù)圖象的頂點為,其中,是整數(shù),且,,則的值為__________.18.如圖,P為平行四邊形ABCD邊AD上一點,E、F分別為PB、PC的中點,ΔPEF、ΔPDC、ΔPAB的面積分別為S、S1、S1.若S=1,則S1+S1=.三、解答題(共66分)19.(10分)為改善生態(tài)環(huán)境,建設(shè)美麗鄉(xiāng)村,某村規(guī)劃將一塊長18米,寬10米的矩形場地建設(shè)成綠化廣場,如圖,內(nèi)部修建三條寬相等的小路,其中一條路與廣場的長平行,另兩條路與廣場的寬平行,其余區(qū)域種植綠化,使綠化區(qū)域的面積為廣場總面積的80%.(1)求該廣場綠化區(qū)域的面積;(2)求廣場中間小路的寬.20.(6分)如圖,AB為⊙O的直徑,C為⊙O上一點,∠ABC的平分線交⊙O于點D,DE⊥BC于點E.(1)試判斷DE與⊙O的位置關(guān)系,并說明理由;(2)過點D作DF⊥AB于點F,若BE=3,DF=3,求圖中陰影部分的面積.21.(6分)數(shù)學興趣小組想利用所學的知識了解某廣告牌的高度,已知CD=2m.經(jīng)測量,得到其它數(shù)據(jù)如圖所示.其中∠CAH=37°,∠DBH=67°,AB=10m,請你根據(jù)以上數(shù)據(jù)計算GH的長.(參考數(shù)據(jù),,)22.(8分)已知關(guān)于的一元二次方程的一個根是1,求它的另一個根及m的值.23.(8分)甲、乙兩人在玩轉(zhuǎn)盤游戲時,把兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤A、B分成4等份、3等份的扇形區(qū)域,并在每一小區(qū)域內(nèi)標上數(shù)字(如圖所示),指針的位置固定.游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,若指針所指兩個區(qū)域的數(shù)字之和為3的倍數(shù),甲勝;若指針所指兩個區(qū)域的數(shù)字之和為4的倍數(shù)時,乙勝.如果指針落在分割線上,則需要重新轉(zhuǎn)動轉(zhuǎn)盤.(1)試用列表或畫樹形圖的方法,求甲獲勝的概率;(2)請問這個游戲規(guī)則對甲、乙雙方公平嗎?試說明理由.24.(8分)如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點和.求一次函數(shù)和反比例函數(shù)的表達式;請直接寫出時,x的取值范圍;過點B作軸,于點D,點C是直線BE上一點,若,求點C的坐標.25.(10分)如圖,已知在平面直角坐標系xOy中,直線y=x+與x軸交于點A,與y軸交于點B,點F是點B關(guān)于x軸的對稱點,拋物線y=x2+bx+c經(jīng)過點A和點F,與直線AB交于點C.(1)求b和c的值;(2)點P是直線AC下方的拋物線上的一動點,連結(jié)PA,PB.求△PAB的最大面積及點P到直線AC的最大距離;(3)點Q是拋物線上一點,點D在坐標軸上,在(2)的條件下,是否存在以A,P,D,Q為頂點且AP為邊的平行四邊形,若存在,直接寫出點Q的坐標;若不存在,說明理由.26.(10分)如圖,在平面直角坐標系中,拋物線過點,動點P在線段上以每秒2個單位長度的速度由點運動到點停止,設(shè)運動時間為,過點作軸的垂線,交直線于點,交拋物線于點.連接,是線段的中點,將線段繞點逆時針旋轉(zhuǎn)得線段.(1)求拋物線的解析式;(2)連接,當為何值時,面積有最大值,最大值是多少?(3)當為何值時,點落在拋物線上.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】試題解析:∵一個三角形的兩個內(nèi)角分別是∴第三個內(nèi)角為又∵另一個三角形的兩個內(nèi)角分別是∴這兩個三角形有兩個內(nèi)角相等,∴這兩個三角形相似.故選C.點睛:兩組角對應相等,兩三角形相似.2、B【分析】根據(jù)表格得到二次函數(shù)的性質(zhì),分別求出開口方向,對稱軸、最值即可解題.【詳解】解:由表格中的數(shù)據(jù)可知,當時,y的值先變大后減小,說明二次函數(shù)開口向下,所以①正確;同時可以確定對稱軸在與之間,所以在對稱軸左側(cè)可得②正確;因為不知道橫坐標之間的取值規(guī)律,所以無法說明對稱軸是直線x=,所以此時頂點的函數(shù)值不一定等于k,所以③當時,y的值是k錯誤;由題可知函數(shù)有最大值,此時,化簡整理得:④正確,綜上正確的有①②④,故選B.【點睛】本題考查了二次函數(shù)的性質(zhì),中等難度,將表格信息轉(zhuǎn)換成有效信息是解題關(guān)鍵.3、A【分析】根據(jù)必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件即可得出答案.【詳解】解:A、方程2x2+3=0的判別式△=0﹣4×2×3=﹣24<0,因此方差2x2+3=0無實數(shù)解是必然事件,故本選項正確;B、在某交通燈路口,遇到紅燈是隨機事件,故本選項錯誤;C、若任取一個實數(shù)a,則(a+1)2>0是隨機事件,故本選項錯誤;D、買一注福利彩票,沒有中獎是隨機事件,故本選項錯誤;故選:A.【點睛】本題主要考察隨機事件,解題關(guān)鍵是熟練掌握隨機事件的定義.4、C【解析】如圖,連接BP,由反比例函數(shù)的對稱性質(zhì)以及三角形中位線定理可得OQ=BP,再根據(jù)OQ的最大值從而可確定出BP長的最大值,由題意可知當BP過圓心C時,BP最長,過B作BD⊥x軸于D,繼而根據(jù)正比例函數(shù)的性質(zhì)以及勾股定理可求得點B坐標,再根據(jù)點B在反比例函數(shù)y=(k>0)的圖象上,利用待定系數(shù)法即可求出k的值.【詳解】如圖,連接BP,由對稱性得:OA=OB,∵Q是AP的中點,∴OQ=BP,∵OQ長的最大值為,∴BP長的最大值為×2=3,如圖,當BP過圓心C時,BP最長,過B作BD⊥x軸于D,∵CP=1,∴BC=2,∵B在直線y=2x上,設(shè)B(t,2t),則CD=t﹣(﹣2)=t+2,BD=﹣2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴22=(t+2)2+(﹣2t)2,t=0(舍)或t=﹣,∴B(﹣,﹣),∵點B在反比例函數(shù)y=(k>0)的圖象上,∴k=﹣×(-)=,故選C.【點睛】本題考查的是代數(shù)與幾何綜合題,涉及了反比例函數(shù)圖象上點的坐標特征,中位線定理,圓的基本性質(zhì)等,綜合性較強,有一定的難度,正確添加輔助線,確定出BP過點C時OQ有最大值是解題的關(guān)鍵.5、A【解析】∵堤壩橫斷面迎水坡AB的坡比是1:,∴,∵BC=50,∴AC=50,∴(m).故選A6、D【分析】根據(jù)題意可得,≥0,即可得出答案.【詳解】解:∵關(guān)于x的一元二次方程x2﹣2x﹣m=0有實根,∴△=(﹣2)2﹣4×1×(﹣m)≥0,解得:m≥﹣1.故選D.【點睛】本題考查的是一元二次方程的根的判別式,當時,有兩個不等實根;當時,有兩個相等實根;當時,沒有實數(shù)根.7、C【分析】圓有無數(shù)條對稱軸,但圓的對稱軸是直線,故C圓的每一條直線都是它的對稱軸的說法是錯誤的【詳解】本題不正確的選C,理由:圓有無數(shù)條對稱軸,其對稱軸都是直線,故任何一條直徑都是它的對稱軸的說法是錯誤的,正確的說法應該是圓有無數(shù)條對稱軸,任何一條直徑所在的直線都是它的對稱軸故選C【點睛】此題主要考察對稱軸圖形和中心對稱圖形,難度不大8、A【解析】作AD⊥BC,可得AD=BD=5,利用勾股定理求得AB,再由余弦函數(shù)的定義求解.【詳解】作AD⊥BC于點D,則AD=5,BD=5,∴AB===5,∴cos∠B===.故選A.【點睛】本題考查銳角三角函數(shù)的定義.9、B【分析】根據(jù)位似變換的定義:對應點的連線交于一點,交點就是位似中心.即位似中心一定在對應點的連線上.【詳解】解:位似圖形的位似中心位于對應點連線所在的直線上,點M、N為對應點,所以位似中心(如圖)在M、N所在的直線上,點P在直線MN上,所以點P為位似中心.

故選:B.【點睛】此題主要考查了位似變換的性質(zhì),利用位似圖形的位似中心位于對應點連線所在的直線上,點M、N為對應點,得出位似中心在M、N所在的直線上是解題關(guān)鍵.10、B【解析】∵x1,x1是一元二次方程的兩根,∴x1+x1=1.故選B.二、填空題(每小題3分,共24分)11、4【分析】直接利用二次根式的性質(zhì)化簡得出答案.【詳解】解:原式.故答案為【點睛】此題主要考查了二次根式的性質(zhì)與化簡,正確掌握二次根式的性質(zhì)是解題關(guān)鍵.12、或【分析】分兩種情況,根據(jù)相似三角形的性質(zhì)計算即可.【詳解】解:①當時,∵四邊形ABCD是平行四邊形,,,②當時,同理可得,,故答案為或.【點睛】考查的是相似三角形的判定和性質(zhì)、平行四邊形的性質(zhì),掌握相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.13、或1【分析】分兩種情況:①當DE=DC時,連接DM,作DG⊥BC于G,由菱形的性質(zhì)得出AB=CD=BC=1,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=110°,DE=AD=1,求出DG=CG=,BG=BC+CG=3,由折疊的性質(zhì)得EN=BN,EM=BM=AM,∠MEN=∠B=60°,證明△ADM≌△EDM,得出∠A=∠DEM=110°,證出D、E、N三點共線,設(shè)BN=EN=xcm,則GN=3-x,DN=x+1,在Rt△DGN中,由勾股定理得出方程,解方程即可;②當CE=CD上,CE=CD=AD,此時點E與A重合,N與點C重合,CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=1(含CE=DE這種情況);【詳解】解:分兩種情況:①當DE=DC時,連接DM,作DG⊥BC于G,如圖1所示:∵四邊形ABCD是菱形,∴AB=CD=BC=1,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=110°,∴DE=AD=1,∵DG⊥BC,∴∠CDG=90°﹣60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M為AB的中點,∴AM=BM=1,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=110°,∴∠MEN+∠DEM=180°,∴D、E、N三點共線,設(shè)BN=EN=x,則GN=3﹣x,DN=x+1,在Rt△DGN中,由勾股定理得:(3﹣x)1+()1=(x+1)1,解得:x=,即BN=,②當CE=CD時,CE=CD=AD,此時點E與A重合,N與點C重合,如圖1所示:CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=1(含CE=DE這種情況);綜上所述,當△CDE為等腰三角形時,線段BN的長為或1;故答案為:或1.【點睛】本題主要考查了折疊變換的性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理,掌握折疊變換的性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理是解題的關(guān)鍵.14、±【解析】試題分析:根據(jù)二次根式的性質(zhì)或一元二次方程的直接開平方法解方程即可求得x=±.考點:一元二次方程的解法15、或【分析】根據(jù)位似變換中對應點的坐標的變化規(guī)律,分兩種情況:一種是當點E和C是對應頂點,G和A是對應頂點;另一種是A和E是對應頂點,C和G是對應頂點.【詳解】∵正方形和正方形中,點和點的坐標分別為,∴(1)當點E和C是對應頂點,G和A是對應頂點,位似中心就是EC與AG的交點.設(shè)AG所在的直線的解析式為解得∴AG所在的直線的解析式為當時,,所以EC與AG的交點為(2)A和E是對應頂點,C和G是對應頂點.,則位似中心就是AE與CG的交點設(shè)AE所在的直線的解析式為解得∴AE所在的直線的解析式為設(shè)CG所在的直線的解析式為解得∴AG所在的直線的解析式為聯(lián)立解得∴AE與CG的交點為綜上所述,兩個正方形的位似中心的坐標是或故答案為或【點睛】本題主要考查位似圖形,涉及了待定系數(shù)法求函數(shù)解析,求位似中心,正確分情況討論是解題的關(guān)鍵.16、1或2【分析】設(shè)BP=x,則CP=BC-BP=3-x,易證∠B=∠C=90°,根據(jù)相似三角形的對應頂點分類討論:①若△PAB∽△PDC時,列出比例式即可求出BP;②若△PAB∽△DPC時,原理同上.【詳解】解:設(shè)BP=x,則CP=BC-BP=3-x∵AB∥CD,∠B=90°,∴∠C=180°-∠B=90°①若△PAB∽△PDC時∴即解得:x=1即此時BP=1;②若△PAB∽△DPC時∴即解得:即此時BP=1或2;綜上所述:BP=1或2.故答案為:1或2.【點睛】此題考查的是相似三角形的判定及性質(zhì),掌握相似三角形的對應邊成比例列方程是解決此題的關(guān)鍵.17、,【分析】先將A,B兩點的坐標代入,消去c可得出b=1-7a,c=10a,得出xM=-=,yM=.方法一:分以下兩種情況:①a>0,畫出示意圖,可得出yM=0,1或2,進而求出a的值;②a<0時,根據(jù)示意圖可得,yM=5,6或7,進而求出a的值;方法二:根據(jù)題意可知或7①,或7②,由①求出a的值,代入②中驗證取舍從而可得出a的值.【詳解】解:將A,B兩點的坐標代入得,,②-①得,3=21a+3b,∴b=1-7a,c=10a.∴原解析式可以化為:y=ax2+(1-7a)x+10a.∴xM=-=,yM=,方法一:①當a>0時,開口向上,∵二次函數(shù)經(jīng)過A,B兩點,且頂點中,x,y均為整數(shù),且,,畫出示意圖如圖①,可得0≤yM≤2,∴yM=0,1或2,當yM=0時,解得a=,不滿足xM為整數(shù)的條件,舍去;當yM=1時,解得a=1(a=不符合條件,舍去);當yM=2時,解得a=,符合條件.②a<0時,開口向下,畫出示意圖如圖②,根據(jù)題中條件可得,5≤yM≤7,只有當yM=5,a=-時,當yM=6,a=-1時符合條件.綜上所述,a的值為,.方法二:根據(jù)題意可得或7;或7③,∴當時,解得a=,不符合③,舍去;當時,解得a=,不符合③,舍去;當時,解得a=,符合③中條件;當時,解得a=1,符合③中條件;當時,解得a=-1,符合③中條件;當時,解得a=-,符合③中條件;當時,解得a=-,不符合③舍去;當時,解得a=-,不符合③舍去;綜上可知a的值為:,.故答案為:,【點睛】本題主要考查二次函數(shù)的解析式、頂點坐標以及函數(shù)圖像的整數(shù)點問題,掌握基本概念與性質(zhì)是解題的關(guān)鍵.18、2.【詳解】∵E、F分別為PB、PC的中點,∴EFBC.∴ΔPEF∽ΔPBC.∴SΔPBC=4SΔPEF=8s.又SΔPBC=S平行四邊形ABCD,∴S1+S1=SΔPDC+SΔPAB=S平行四邊形ABCD=8s=2.三、解答題(共66分)19、(1)該廣場綠化區(qū)域的面積為144平方米;(2)廣場中間小路的寬為1米.【分析】(1)根據(jù)該廣場綠化區(qū)域的面積=廣場的長×廣場的寬×80%,即可求出結(jié)論;(2)設(shè)廣場中間小路的寬為x米,根據(jù)矩形的面積公式(將綠化區(qū)域合成矩形),即可得出關(guān)于x的一元二次方程,解之取其較小值即可得出結(jié)論.【詳解】解:(1)18×10×80%=144(平方米).答:該廣場綠化區(qū)域的面積為144平方米.(2)設(shè)廣場中間小路的寬為x米,依題意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合題意,舍去).答:廣場中間小路的寬為1米.【點睛】本題考查的知識點是一元二次方程的應用,找準題目中的等量關(guān)系式是解此題的關(guān)鍵.20、(1)DE與⊙O相切,理由見解析;(2)陰影部分的面積為2π﹣.【分析】(1)直接利用角平分線的定義結(jié)合平行線的判定與性質(zhì)得出∠DEB=∠EDO=90°,進而得出答案;(2)利用勾股定理結(jié)合扇形面積求法分別分析得出答案.【詳解】(1)DE與⊙O相切,理由:連接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分線交⊙O于點D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE與⊙O相切;(2)∵∠ABC的平分線交⊙O于點D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF=,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=,∴DO=2,則FO=,故圖中陰影部分的面積為:.【點睛】此題主要考查了切線的判定方法以及扇形面積求法等知識,正確得出DO的長是解題關(guān)鍵.21、GH的長為10m【分析】首先構(gòu)造直角三角形,設(shè)DE=xm,則CE=(x+2)m,由三角函數(shù)得出AE和BE,由AE=BE=AB得出方程,解方程求出DE,即可得出GH的長【詳解】解:延長CD交AH于點E,則CE⊥AH,如圖所示.設(shè)DE=xm,則CE=(x+2)m,在Rt△AEC和Rt△BED中,tan37°=,tan67°=,∴AE=,BE=.∵AE﹣BE=AB,∴﹣=10,即=10,解得:x=8,∴DE=8m,∴GH=CE=CD+DE=2m+8m=10m.答:GH的長為10m.【點睛】本題考查解直角三角形的應用,解題關(guān)鍵在于作出點E22、另一根為-3,m=1【分析】設(shè)方程的另一個根為a,由根與系數(shù)的關(guān)系得出a+1=﹣m,a×1=﹣3,解方程組即可.【詳解】設(shè)方程的另一個根為a,則由根與系數(shù)的關(guān)系得:a+1=﹣m,a×1=﹣3,解得:a=﹣3,m=1,答:方程的另一根為﹣3,m=1.【點睛】本題考查了根與系數(shù)的關(guān)系和一元二次方程的解,能熟記根與系數(shù)的關(guān)系的內(nèi)容是解答本題的關(guān)鍵.23、(1);(2)游戲規(guī)則對甲、乙雙方不公平.【解析】(1)根據(jù)題意列出圖表,得出數(shù)字之和共有12種結(jié)果,其中“和是3的倍數(shù)”的結(jié)果有4種,再根據(jù)概率公式求出甲獲勝的概率.(2)根據(jù)圖表(1)得出)“和是4的倍數(shù)”的結(jié)果有3種,根據(jù)概率公式求出乙的概率,再與甲的概率進行比較,得出游戲是否公平.【詳解】解:(1)列表如下:∵數(shù)字之和共有12種結(jié)果,其中“和是3的倍數(shù)”的結(jié)果有4種,∴.(2)∵“和是4的倍數(shù)”的結(jié)果有3種,∴.∵,即P(甲獲勝)≠P(乙獲勝),∴這個游戲規(guī)則對甲、乙雙方不公平.24、反比例函數(shù)的解析式為,一次函數(shù)解析式為:;當或時,;當點C的坐標為或時,.【分析】(1)利用待定系數(shù)法求出k,求出點B的坐標,再利用待定系數(shù)法求出一次函數(shù)解析式;(2)利用數(shù)形結(jié)合思想,觀察直線在雙曲線上方的情況即可進行解答;(3)根據(jù)直角三角形的性質(zhì)得到∠DAC=30°,根據(jù)正切的定義求出CD,分點C在點D的左側(cè)、點C在點D的右側(cè)兩種情況解答.【詳解】點在反比例函數(shù)的圖象上,,反比例函數(shù)的解析式為,點在反比例函數(shù)的圖象上,,則點B的坐標為,由題意得,,解得,,則一次函數(shù)解析式為:;由函數(shù)圖象可知,當或時,;,,,由題意得,,在中,,即,解得,,當點C在點D的左側(cè)時,點C的坐標為,當點C在點D的右側(cè)時,點C的坐標為,當點C的坐標為或時,.【點睛】本題考查一次函數(shù)和反比例函數(shù)的交點問題,熟練掌握待定系數(shù)法求函數(shù)解析式的一般步驟、靈活運用分類討論思想、數(shù)形結(jié)合思想是解題的關(guān)鍵.25、(1)b=,c=﹣;(2),;(3)點Q的坐標為:(﹣1﹣,)或(,﹣)或(﹣1+,)或(,)或(﹣,﹣).【分析】(1)直線與軸交于點,與軸交于點,則點、的坐標分別為:、,則點,拋物線經(jīng)過點和點,則,將點的坐標代入拋物線表達式并解得:;(2)過點作軸的平行線交于點,設(shè)出點P,H的坐標,將△PAB的面積表示成△APH和△BPH的面積之和,可得函數(shù)表

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論