版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.在皮影戲的表演中,要使銀幕上的投影放大,下列做法中正確的是()A.把投影燈向銀幕的相反方向移動 B.把剪影向投影燈方向移動C.把剪影向銀幕方向移動 D.把銀幕向投影燈方向移動2.若,則的值為()A. B. C. D.﹣3.同時投擲兩個骰子,點數(shù)和為5的概率是()A. B. C. D.4.在一個不透明的袋子中裝有除顏色外其余均相同的m個小球,其中8個黑球,從袋中隨機摸出一球,記下其顏色,這稱為一次摸球?qū)嶒?,之后把它放回袋中,攪勻后,再繼續(xù)摸出一球,記下其顏色,以下是利用計算機模擬的摸球試驗次數(shù)與摸出黑球次數(shù)的列表:摸球試驗次數(shù)100100050001000050000100000摸出黑球次數(shù)49425172232081669833329根據(jù)列表,可以估計出m的值是()A.8 B.16 C.24 D.325.若|m|=5,|n|=7,m+n<0,則m﹣n的值是()A.﹣12或﹣2 B.﹣2或12 C.12或2 D.2或﹣126.sin30°的值為()A. B. C. D.7.如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E,B、E是半圓弧的三等分點,弧BE的長為π,則圖中陰影部分的面積為()A. B. C. D.8.如圖,在矩形ABCD中,AB=12,P是AB上一點,將△PBC沿直線PC折疊,頂點B的對應(yīng)點是G,過點B作BE⊥CG,垂足為E,且在AD上,BE交PC于點F,則下列結(jié)論,其中正確的結(jié)論有()①BP=BF;②若點E是AD的中點,那么△AEB≌△DEC;③當(dāng)AD=25,且AE<DE時,則DE=16;④在③的條件下,可得sin∠PCB=;⑤當(dāng)BP=9時,BE?EF=1.A.2個 B.3個 C.4個 D.5個9.下列圖案中既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.10.下列各說法中:①圓的每一條直徑都是它的對稱軸;②長度相等的兩條弧是等?。虎巯嗟鹊南宜鶎Φ幕∫蚕嗟?;④同弧所對的圓周角相等;⑤90°的圓周角所對的弦是直徑;⑥任何一個三角形都有唯一的外接圓;其中正確的有()A.3個 B.4個 C.5個 D.6個二、填空題(每小題3分,共24分)11.在△ABC中,∠B=45°,cosA=,則∠C的度數(shù)是_____.12.在平面直角坐標(biāo)系中,點的坐標(biāo)分別是,以點為位似中心,相們比為,把縮小,得到,則點的對應(yīng)點的坐標(biāo)為_____.13.已知扇形的半徑為,圓心角為,則扇形的弧長為__________.14.反比例函數(shù)和在第一象限的圖象如圖所示,點A在函數(shù)圖像上,點B在函數(shù)圖像上,AB∥y軸,點C是y軸上的一個動點,則△ABC的面積為_____.15.有五張分別印有等邊三角形、正方形、正五邊形、矩形、正六邊形圖案的卡片(這些卡片除圖案不同外,其余均相同).現(xiàn)將有圖案的一面朝下任意擺放,從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為_____.16.在一個不透明的口袋中,裝有1個紅球若干個白球,它們除顏色外都相同,從中任意摸出一個球,摸到紅球的概率為,則此口袋中白球的個數(shù)為____________.17.如圖,直線l1∥l2∥l3,直線AC交l1,l2,l3于點A,B,C;直線DF交l1,l2,l3于點D,E,F(xiàn),已知,則_______.18.計算:﹣tan60°=_____.三、解答題(共66分)19.(10分)如圖,已知、兩點的坐標(biāo)分別為,,直線與反比例函數(shù)的圖象相交于點和點.(1)求直線與反比例函數(shù)的解析式;(2)求的度數(shù);(3)將繞點順時針方向旋轉(zhuǎn)角(為銳角),得到,當(dāng)為多少度時,并求此時線段的長度.20.(6分)在平面直角坐標(biāo)系中,直線與雙曲線相交于,兩點,點坐標(biāo)為(-3,2),點坐標(biāo)為(n,-3).(1)求一次函數(shù)和反比例函數(shù)的表達式;(2)如果點是軸上一點,且的面積是5,求點的坐標(biāo).(3)利用函數(shù)圖象直接寫出關(guān)于x的不等式的解集.21.(6分)某校3男2女共5名學(xué)生參加黃石市教育局舉辦的“我愛黃石”演講比賽.(1)若從5名學(xué)生中任意抽取3名,共有多少種不同的抽法,列出所有可能情形;(2)若抽取的3名學(xué)生中,某男生抽中,且必有1女生的概率是多少?22.(8分)為早日實現(xiàn)脫貧奔小康的宏偉目標(biāo),我市結(jié)合本地豐富的山水資源,大力發(fā)展旅游業(yè),王家莊在當(dāng)?shù)卣闹С窒?,辦起了民宿合作社,專門接待游客,合作社共有80間客房.根據(jù)合作社提供的房間單價x(元)和游客居住房間數(shù)y(間)的信息,樂樂繪制出y與x的函數(shù)圖象如圖所示:(1)求y與x之間的函數(shù)關(guān)系式;(2)合作社規(guī)定每個房間價格不低于60元且不超過150元,對于游客所居住的每個房間,合作社每天需支出20元的各種費用,房價定為多少時,合作社每天獲利最大?最大利潤是多少?23.(8分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于第二、四象限內(nèi)的A,B兩點,與x軸交于點C,與y軸交于點D,點B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sin∠AOC=.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)連接OB,求△AOB的面積.24.(8分)如圖所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.點D由點A出發(fā)沿AB方向向點B勻速運動,同時點E由點B出發(fā)沿BC方向向點C勻速運動,它們的速度均為1cm/s.連接DE,設(shè)運動時間為t(s)(0<t<10),解答下列問題:(1)當(dāng)t為何值時,△BDE的面積為7.5cm2;(2)在點D,E的運動中,是否存在時間t,使得△BDE與△ABC相似?若存在,請求出對應(yīng)的時間t;若不存在,請說明理由.25.(10分)已知等邊△ABC,點D為BC上一點,連接AD.圖1圖2(1)若點E是AC上一點,且CE=BD,連接BE,BE與AD的交點為點P,在圖(1)中根據(jù)題意補全圖形,直接寫出∠APE的大小;(2)將AD繞點A逆時針旋轉(zhuǎn)120°,得到AF,連接BF交AC于點Q,在圖(2)中根據(jù)題意補全圖形,用等式表示線段AQ和CD的數(shù)量關(guān)系,并證明.26.(10分)如圖,△ABC中,∠BAC=120o,以BC為邊向外作等邊△BCD,把△ABD繞著D點按順時針方向旋轉(zhuǎn)60o后到△ECD的位置.若AB=6,AC=4,求∠BAD的度數(shù)和AD的長.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)中心投影的特點可知:在燈光下,離點光源近的物體它的影子短,離點光源遠(yuǎn)的物體它的影子長,據(jù)此分析判斷即可.【詳解】解:根據(jù)中心投影的特點可知,如圖,當(dāng)投影燈接近銀幕時,投影會越來越大;相反當(dāng)投影燈遠(yuǎn)離銀幕時,投影會越來越小,故A錯誤;當(dāng)剪影越接近銀幕時,投影會越來越??;相反當(dāng)剪影遠(yuǎn)離銀幕時,投影會越來越大,故B正確,C錯誤;當(dāng)銀幕接近投影燈時,投影會越來越小;當(dāng)銀幕遠(yuǎn)離投影燈時,投影會越來越大,故D錯誤.
故選:B.【點睛】此題主要考查了中心投影的特點,熟練掌握中心投影的原理和特點是解題的關(guān)鍵.2、C【分析】將變形為﹣1,再代入計算即可求解.【詳解】解:∵,∴=﹣1=﹣1=.故選:C.【點睛】考查了比例的性質(zhì),解題的關(guān)鍵是將變形為.3、B【解析】試題解析:列表如下:
1
2
3
4
5
6
1
2
3
4
5
6
7
2
3
4
5
6
7
8
3
4
5
6
7
8
9
4
5
6
7
8
9
10
5
6
7
8
9
10
11
6
7
8
9
10
11
12
∵從列表中可以看出,所有可能出現(xiàn)的結(jié)果共有36種,且這些結(jié)果出現(xiàn)的可能性相等,其中點數(shù)的和為5的結(jié)果共有4種,∴點數(shù)的和為5的概率為:.故選B.考點:列表法與樹狀圖法.4、C【分析】利用大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率求解即可.【詳解】解:∵通過大量重復(fù)試驗后發(fā)現(xiàn),摸到黑球的頻率穩(wěn)定于,由題意得:,解得:m=24,故選:C.【點睛】此題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率,關(guān)鍵是根據(jù)黑球的頻率得到相應(yīng)的等量關(guān)系.5、C【分析】根據(jù)題意,利用絕對值的意義求出m與n的值,再代入所求式子計算即可.【詳解】解:∵|m|=5,|n|=7,且m+n<0,∴m=5,n=﹣7;m=﹣5,n=﹣7,可得m﹣n=12或2,則m﹣n的值是12或2.故選:C.【點睛】本題考查了絕對值的意義,掌握絕對值的意義求值是關(guān)鍵.6、C【分析】直接利用特殊角的三角函數(shù)值求出答案.【詳解】解:sin30°=故選C【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關(guān)特殊角的三角函數(shù)值是解題關(guān)鍵.7、D【分析】首先根據(jù)圓周角定理得出扇形半徑以及圓周角度數(shù),進而利用銳角三角函數(shù)關(guān)系得出BC,AC的長,利用S△ABC﹣S扇形BOE=圖中陰影部分的面積求出即可【詳解】解:連接BD,BE,BO,EO,∵B,E是半圓弧的三等分點,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=∠EBA=30°,∴BE∥AD,∵弧BE的長為π,∴=π,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC==3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面積相等,∴圖中陰影部分的面積為:S△ABC﹣S扇形BOE=﹣=﹣.故選D.【點睛】此題主要考查了扇形的面積計算以及三角形面積求法等知識,根據(jù)已知得出△BOE和△ABE面積相等是解題關(guān)鍵.8、C【分析】①根據(jù)折疊的性質(zhì)∠PGC=∠PBC=90°,∠BPC=∠GPC,從而證明BE⊥CG可得BE∥PG,推出∠BPF=∠BFP,即可得到BP=BF;②利用矩形ABCD的性質(zhì)得出AE=DE,即可利用條件證明△ABE≌△DCE;③先根據(jù)題意證明△ABE∽△DEC,再利用對應(yīng)邊成比例求出DE即可;④根據(jù)勾股定理和折疊的性質(zhì)得出△ECF∽△GCP,再利用對應(yīng)邊成比例求出BP,即可算出sin值;⑤連接FG,先證明?BPGF是菱形,再根據(jù)菱形的性質(zhì)得出△GEF∽△EAB,再利用對應(yīng)邊成比例求出BE·EF.【詳解】①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折疊得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;故①正確;②在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中點,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);故②正確;③當(dāng)AD=25時,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,設(shè)AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16;故③正確;④由③知:CE=,BE=,由折疊得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,設(shè)BP=BF=PG=y(tǒng),∴,∴y=,∴BP=,在Rt△PBC中,PC=,∴sin∠PCB=;故④不正確;⑤如圖,連接FG,由①知BF∥PG,∵BF=PG=PB,∴?BPGF是菱形,∴BP∥GF,F(xiàn)G=PB=9,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE?EF=AB?GF=12×9=1;故⑤正確,所以本題正確的有①②③⑤,4個,故選:C.【點睛】本題考查矩形與相似的結(jié)合、折疊的性質(zhì),關(guān)鍵在于通過基礎(chǔ)知識證明出所需結(jié)論,重點在于相似對應(yīng)邊成比例.9、D【分析】根據(jù)中心對稱圖形以及軸對稱圖形的定義逐項判斷即可.在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形;如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形.【詳解】解:A.不是中心對稱圖形,是軸對稱圖形,此選項錯誤;B.是中心對稱圖形,不是軸對稱圖形,此選項錯誤;C.不是中心對稱圖形,是軸對稱圖形,此選項錯誤;D.既是中心對稱圖形,又是軸對稱圖形,此選項正確;故選:D.【點睛】本題考查的知識點是識別中心對稱圖形以及軸對稱圖形,掌握中心對稱圖形以及軸對稱圖形的特征是解此題的關(guān)鍵.10、A【分析】根據(jù)對稱軸、等弧、圓周角定理、三角形外接圓的定義及弦、弧、圓心角的相互關(guān)系分別判斷后即可解答.【詳解】①對稱軸是直線,而直徑是線段,圓的每一條直徑所在直線都是它的對稱軸,①錯誤;②在同圓或等圓中,長度相等的兩條弧是等弧,不在同圓或等圓中不一定是等弧,②錯誤;③在同圓或等圓中,相等的弦所對的弧也相等,不在同圓或等圓中,相等的弦所對的弧不一定相等,③錯誤;④根據(jù)圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半,④正確;⑤根據(jù)圓周角定理推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑,⑤正確;⑥根據(jù)三角形外接圓的定義可知,任何一個三角形都有唯一的外接圓,⑥正確.綜上,正確的結(jié)論為③④⑤.故選A.【點睛】本題了考查對稱軸、等弧、圓周角、外接圓的定義及其相互關(guān)系,熟練運用相關(guān)知識是解決問題的關(guān)鍵.二、填空題(每小題3分,共24分)11、75°【解析】已知在△ABC中°,cosA=,可得∠A=60°,又因∠B=45,根據(jù)三角形的內(nèi)角和定理可得∠C=75°.12、或【解析】利用位似圖形的性質(zhì)可得對應(yīng)點坐標(biāo)乘以和-即可求解.【詳解】解:以點為位似中心,相似比為,把縮小,點的坐標(biāo)是則點的對應(yīng)點的坐標(biāo)為或,即或,故答案為:或.【點睛】本題考查的是位似圖形,熟練掌握位似變換是解題的關(guān)鍵.13、【分析】直接根據(jù)弧長公式即可求解.【詳解】∵扇形的半徑為8cm,圓心角的度數(shù)為120°,
∴扇形的弧長為:.故答案為:.【點睛】本題考查了弧長的計算.解答該題需熟記弧長的公式.14、1【分析】設(shè)A(m,),B(m,),則AB=-,△ABC的高為m,根據(jù)三角形面積公式計算即可得答案.【詳解】∵A、B分別為、圖象上的點,AB∥y軸,∴設(shè)A(m,),B(m,),∴S△ABC=(-)m=1.故答案為:1【點睛】本題考查反比例函數(shù)圖象上點的坐標(biāo)特征,熟知反比例函數(shù)圖象上點的坐標(biāo)都滿足反比例函數(shù)的解析式是解題關(guān)鍵.15、【解析】判斷出即是中心對稱,又是軸對稱圖形的個數(shù),然后結(jié)合概率計算公式,計算,即可.【詳解】解:等邊三角形、正方形、正五邊形、矩形、正六邊形圖案中既是中心對稱圖形,又是軸對稱圖形是:正方形、矩形、正六邊形共3種,故從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為:.故答案為.【點睛】考查中心對稱圖形和軸對稱圖形的判定,考查概率計算公式,難度中等.16、3【分析】根據(jù)概率公式即可得出總數(shù),再根據(jù)總數(shù)算出白球個數(shù)即可.【詳解】∵摸到紅球的概率為,且袋中只有1個紅球,∴袋中共有4個球,∴白球個數(shù)=4-1=3.故答案為:3.【點睛】本題考查概率相關(guān)的計算,關(guān)鍵在于通過概率求出總數(shù)即可算出白球.17、1【分析】根據(jù)題意求得,根據(jù)平行線分線段成比例定理解答.【詳解】∵,∴=1,∵l1∥l1∥l3,∴==1,故答案為:1.【點睛】本題考查了平行線分線段成比例定理,靈活運用定理、找準(zhǔn)對應(yīng)關(guān)系是解題的關(guān)鍵.18、2.【分析】先運用二次根式的性質(zhì)和特殊角的三角函數(shù)進行化簡,然后再進行計算即可.【詳解】解:﹣tan60°=3﹣=2.故答案為:2.【點睛】本題考查了基本運算,解答的關(guān)鍵是靈活運用二次根式的性質(zhì)對二次根式進行化簡、牢記特殊角的三角函數(shù)值.三、解答題(共66分)19、(1)直線AB的解析式為,反比例函數(shù)的解析式為;(2)∠ACO=30°;(3)當(dāng)為60°時,OC'⊥AB,AB'=1.【分析】(1)設(shè)直線AB的解析式為y=kx+b(k≠0),將A與B坐標(biāo)代入求出k與b的值,確定出直線AB的解析式,將D坐標(biāo)代入直線AB解析式中求出n的值,確定出D的坐標(biāo),將D坐標(biāo)代入反比例解析式中求出m的值,即可確定出反比例解析式;(2)聯(lián)立兩函數(shù)解析式求出C坐標(biāo),過C作CH垂直于x軸,在直角三角形OCH中,由OH與HC的長求出tan∠COH的值,利用特殊角的三角函數(shù)值求出∠COH的度數(shù),在三角形AOB中,由OA與OB的長求出tan∠ABO的值,進而求出∠ABO的度數(shù),由∠ABO-∠COH即可求出∠ACO的度數(shù);(3)過點B1作B′G⊥x軸于點G,先求得∠OCB=30°,進而求得α=∠COC′=60°,根據(jù)旋轉(zhuǎn)的性質(zhì),得出∠BOB′=α=60°,解直角三角形求得B′的坐標(biāo),然后根據(jù)勾股定理即可求得AB′的長.【詳解】解:(1)設(shè)直線AB的解析式為y=kx+b(k≠0),將A(0,1),B(-1,0)代入得:解得,故直線AB解析式為y=x+1,將D(2,n)代入直線AB解析式得:n=2+1=6,則D(2,6),將D坐標(biāo)代入中,得:m=12,則反比例解析式為;(2)聯(lián)立兩函數(shù)解析式得:解得解得:或,則C坐標(biāo)為(-6,-2),過點C作CH⊥x軸于點H,在Rt△OHC中,CH=,OH=3,∵tan∠COH=,∴∠COH=30°,∵tan∠ABO=,∴∠ABO=60°,∴∠ACO=∠ABO-∠COH=30°;(3)過點B′作B′G⊥x軸于點G,∵OC′⊥AB,∠ACO=30°,∴∠COC′=60°,∴α=60°.∴∠BOB′=60°,∴∠OB′G=30°,∵OB′=OB=1,∴OG=OB′=2,B′G=2,∴B′(-2,2),∴AB′==1.【點睛】此題考查了一次函數(shù)與反比例函數(shù)的交點問題,涉及的知識有:待定系數(shù)法確定函數(shù)解析式,一次函數(shù)與x軸的交點,坐標(biāo)與圖形性質(zhì),勾股定理,以及銳角三角函數(shù)定義,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.20、(1)一次函數(shù)表達式為y=-x-1;反比例函數(shù)表達式為y=-;(2)點P的坐標(biāo)是(-3,0)或(1,0);(3)-3<x<0或x>0【分析】(1)將A坐標(biāo)代入雙曲線解析式中求出m的值,確定出雙曲線的解析式,再將A與B坐標(biāo)代入一次函數(shù)解析式中求出k與b的值,即可確定出一次函數(shù)解析式;(2)求得直線與x軸的交點是(-1,0),設(shè)點P的坐標(biāo)是(a,0),則的底為|a+1|,利用三角形面積公式即可求得點P的坐標(biāo);(3)根據(jù)一次函數(shù)與反比例函數(shù)的兩交點A與B的橫坐標(biāo)以及0,將x軸分為四個范圍,找出反比例圖象在一次函數(shù)圖象上方時x的范圍即可.【詳解】(1)∵雙曲線(m≠0)過點A(-3,2),∴m=-3×2=-6,∴反比例函數(shù)表達式為.∵點B(n,-3)在反比例函數(shù)的圖象上,∴n=2,B(2,-3).∵點A(-3,2)與點B(2,-3)在直線y=kx+b上,∴解得∴一次函數(shù)表達式為y=-x-1;(2)如解圖,在x軸上任取一點P,連接AP,BP,由(1)知點B的坐標(biāo)是(2,-3).在y=-x-1中令y=0,解得x=-1,則直線與x軸的交點是(-1,0).設(shè)點P的坐標(biāo)是(a,0).∵△ABP的面積是5,∴·|a+1|·(2+3)=5,則|a+1|=2,解得a=-3或1.則點P的坐標(biāo)是(-3,0)或(1,0).(3)根據(jù)圖象得:-3<x<0或x>0【點睛】此題考查了一次函數(shù)與反比例函數(shù)的交點問題,利用了待定系數(shù)法及數(shù)形結(jié)合的思想,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.21、(1)共有10種不同的抽法,分別是:男男男,男男女,男男女,男男女,男男女,男女女,男男女,男男女,男女女,男女女;(2)【分析】(1)根據(jù)題意得出不同的抽法,再列舉出即可;(2)根據(jù)(1)的不同的抽法,找出必有1女生的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:(1)從5名學(xué)生中任意抽取3名,共有10種不同的抽法,分別是:男男男,男男女,男男女,男男女,男男女,男女女,男男女,男男女,男女女,男女女;(2)共有10種不同的抽法,其中必有1女生的有9種,則必有1女生的概率是.【點睛】此題考查了概率的求法,用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比;解題時要認(rèn)真審題,注意列舉法的合理運用.22、(1)y=﹣0.5x+110;(2)房價定為120元時,合作社每天獲利最大,最大利潤是5000元.【解析】(1)根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得相應(yīng)的函數(shù)解析式;(2)根據(jù)題意可以得到利潤與x之間的函數(shù)解析式,從而可以求得最大利潤.【詳解】(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,,解得:,即y與x之間的函數(shù)關(guān)系式是y=﹣0.5x+110;(2)設(shè)合作社每天獲得的利潤為w元,w=x(﹣0.5x+110)﹣20(﹣0.5x+110)=﹣0.5x2+120x﹣2200=﹣0.5(x﹣120)2+5000,∵60≤x≤150,∴當(dāng)x=120時,w取得最大值,此時w=5000,答:房價定為120元時,合作社每天獲利最大,最大利潤是5000元.【點睛】本題考查了一次函數(shù)的應(yīng)用、二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用二次函數(shù)的性質(zhì)解答.23、(1)y=﹣,y=﹣x﹣1;(2)【分析】(1)過點A作AE⊥x軸于點E,通過解直角三角形求出線段AE、OE的長度,即求出點A的坐標(biāo),再由點A的坐標(biāo)利用待定系數(shù)法求出反比例函數(shù)解析式即可,再由點B在反比例函數(shù)圖象上可求出點B的坐標(biāo),由點A、B的坐標(biāo)利用待定系數(shù)法求出直線AB的解析式;(2)令一次函數(shù)解析式中y=0即可求出點C的坐標(biāo),再利用三角形的面積公式即可得出結(jié)論.【詳解】解:(1)過點作軸于點,則.在中,,,,,點的坐標(biāo)為.點在反比例函數(shù)的圖象上,,解得:.反比例函數(shù)解析式為.點在反比例函數(shù)的圖象上,,解得:,點的坐標(biāo)為.將點、點代入中得:,解得:,一次函數(shù)解析式為.(2)令一次函數(shù)中,則,解得:,即點的坐標(biāo)為..【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題、待定系數(shù)法求函數(shù)解析式以及三角形的面積公式,根據(jù)點的坐標(biāo)利用待定系數(shù)法求出函數(shù)解析式是關(guān)鍵.24、(1)t為3秒時,△BDE的面積為7.3cm3;(3)存在時間t為或秒時,使得△BDE與△ABC相似.【分析】(1)根據(jù)等腰三角形的性質(zhì)和相似三角形的判定和性質(zhì)求三角形BDE邊BE的高即可求解;(3)根據(jù)等腰三角形和相似三角形的判定和性質(zhì)分兩種情況說明即可.【詳解】解:(1)分別過點D、A作DF⊥BC、AG⊥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《倉庫現(xiàn)場管理》課件
- 《倉庫庫存管理系統(tǒng)》課件
- 《小學(xué)細(xì)節(jié)描寫》課件
- 單位管理制度集粹選集員工管理篇
- 單位管理制度合并匯編【職員管理】
- 四川省南充市重點高中2024-2025學(xué)年高三上學(xué)期12月月考地理試卷含答案
- 單位管理制度分享合集職員管理篇十篇
- 單位管理制度范文大合集【人事管理】十篇
- 單位管理制度呈現(xiàn)大全職工管理篇十篇
- 《運算律》教案(20篇)
- 2024年時事政治試題【有答案】
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識
- MT 285-1992縫管錨桿
- 【高中化學(xué)校本課程】《生活中的化學(xué)》校本教材
- 水資源管理培訓(xùn)材料課件
- SCA自動涂膠系統(tǒng)培訓(xùn)講義
- 促銷活動方案(共29頁).ppt
- 農(nóng)民專業(yè)合作社財務(wù)報表(三張表)
- 培訓(xùn)準(zhǔn)備工作清單
- 沉井工程檢驗批全套【精選文檔】
- 貝類增養(yǎng)殖考試資料
評論
0/150
提交評論