版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.拋物線y=(x﹣2)2﹣3的頂點坐標是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)2.已知如圖中,點為,的角平分線的交點,點為延長線上的一點,且,,若,則的度數(shù)是().A. B. C. D.3.若關于的一元二次方程的一個根是,則的值是()A.2011 B.2015 C.2019 D.20204.如圖,正方形的面積為16,是等邊三角形,點在正方形內(nèi),在對角線上有一點,使的和最小,則這個最小值為()A.2 B.4 C.6 D.85.下列語句,錯誤的是()A.直徑是弦 B.相等的圓心角所對的弧相等C.弦的垂直平分線一定經(jīng)過圓心 D.平分弧的半徑垂直于弧所對的弦6.某地質(zhì)學家預測:在未來的20年內(nèi),F(xiàn)市發(fā)生地震的概率是.以下敘述正確的是()A.從現(xiàn)在起經(jīng)過13至14年F市將會發(fā)生一次地震B(yǎng).可以確定F市在未來20年內(nèi)將會發(fā)生一次地震C.未來20年內(nèi),F(xiàn)市發(fā)生地震的可能性比沒有發(fā)生地震的可能性大D.我們不能判斷未來會發(fā)生什么事,因此沒有人可以確定何時會有地震發(fā)生7.﹣3的絕對值是()A.﹣3 B.3 C.- D.8.如圖,正方形中,,以為圓心,長為半徑畫,點在上移動,連接,并將繞點逆時針旋轉至,連接.在點移動的過程中,長度的最小值是()A. B. C. D.9.當壓力F(N)一定時,物體所受的壓強p(Pa)與受力面積S(m2)的函數(shù)關系式為P=(S≠0),這個函數(shù)的圖象大致是()A. B.C. D.10.如圖,已知正方形ABCD,點E是BC邊的中點,DE與AC相交于點F,連接BF,下列結論:;;;,其中正確的是()A. B. C. D.11.據(jù)路透社報道,中國華為技術有限公司推出新的服務器芯片組,此舉正值中國努力提高芯片制造能力,并減少對進口芯片的嚴重依賴.華為技術部門還表示,電子元件的尺寸大幅度縮小,在芯片上某種電子元件大約只占有面積.其中0.00000065用科學記數(shù)法表示為()A. B. C. D.12.如圖,反比例函數(shù)的圖象上有一點A,AB平行于x軸交y軸于點B,△ABO的面積是1,則反比例函數(shù)的表達式是()A. B. C. D.二、填空題(每題4分,共24分)13.已知線段a=4,b=16,則a,b的比例中項線段的長是_______.14.若把一根長200cm的鐵絲分成兩部分,分別圍成兩個正方形,則這兩個正方形的面積的和最小值為_____.15.已知拋物線y=ax2+bx+c開口向上,一條平行于x軸的直線截此拋物線于M、N兩點,那么線段MN的長度隨直線向上平移而變_____.(填“大”或“小”)16.設m、n是一元二次方程x2+3x-7=0的兩個根,則m2+4m+n=_____.17.若是方程的一個根.則的值是________.18.如圖,在矩形中,對角線與相交于點,,垂足為點,,且,則的長為_______.三、解答題(共78分)19.(8分)如圖1,將邊長為的正方形如圖放置在直角坐標系中.(1)如圖2,若將正方形繞點順時針旋轉時,求點的坐標;(2)如圖3,若將正方形繞點順時針旋轉時,求點的坐標.20.(8分)已知正比例函數(shù)y=k1x(k1≠0)與反比例函數(shù)的圖象交于A、B兩點,點A的坐標為(2,1).(1)求正比例函數(shù)、反比例函數(shù)的表達式;(2)求點B的坐標.21.(8分)畫出如圖所示的幾何體的三種視圖.22.(10分)綜合與探究如圖,已知拋物線與軸交于,兩點,與軸交于點,對稱軸為直線,頂點為.(1)求拋物線的解析式及點坐標;(2)在直線上是否存在一點,使點到點的距離與到點的距離之和最???若存在,求出點的坐標;若不存在,請說明理由.(3)在軸上取一動點,,過點作軸的垂線,分別交拋物線,,于點,,.①判斷線段與的數(shù)量關系,并說明理由②連接,,,當為何值時,四邊形的面積最大?最大值為多少?23.(10分)學校決定每班選取名同學參加全國交通安全日細節(jié)關乎生命安全文明出行主題活動啟動儀式,班主任決定從名同學(小明、小山、小月、小玉)中通過抽簽的方式確定名同學去參加該活動.抽簽規(guī)則:將名同學的姓名分別寫在張完全相同的卡片正面,把張卡片的背面朝上,洗勻后放在桌子上,王老師先從中隨機抽取一張卡片,記下名字,再從剩余的張卡片中隨機抽取一張,記下名字.(1)小剛被抽中是___事件,小明被抽中是____事件(填不可能、必然、隨機),第一次抽取卡片抽中是小玉的概率是______;(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結果,并求出小月被抽中的概率.24.(10分)某商店如果將進貨價為8元的商品按每件11元售出,每天可銷售211件.現(xiàn)在采取提高售價,減少售貨量的方法增加利潤,已知這種商品每漲價1.5元,其銷量減少11件.(1)若漲價x元,則每天的銷量為____________件(用含x的代數(shù)式表示);(2)要使每天獲得711元的利潤,請你幫忙確定售價.25.(12分)如圖是二次函數(shù)y=(x+m)2+k的圖象,其頂點坐標為M(1,﹣4)(1)求出圖象與x軸的交點A、B的坐標;(2)在二次函數(shù)的圖象上是否存在點P,使S△PAB=S△MAB?若存在,求出點P的坐標;若不存在,請說明理由.26.AB是⊙O的直徑,C點在⊙O上,F(xiàn)是AC的中點,OF的延長線交⊙O于點D,點E在AB的延長線上,∠A=∠BCE.(1)求證:CE是⊙O的切線;(2)若BC=BE,判定四邊形OBCD的形狀,并說明理由.
參考答案一、選擇題(每題4分,共48分)1、A【解析】已知拋物線解析式為頂點式,可直接寫出頂點坐標.【詳解】:∵y=(x﹣2)2﹣3為拋物線的頂點式,根據(jù)頂點式的坐標特點可知,
∴拋物線的頂點坐標為(2,-3).
故選A..【點睛】本題考查了將解析式化為頂點式y(tǒng)=a(x-h)2+k,頂點坐標是(h,k),對稱軸是x=h.2、C【分析】連接BO,證O是△ABC的內(nèi)心,證△BAO≌△DAO,得∠D=∠ABO,根據(jù)三角形外角性質(zhì)得∠ACO=∠BCO=∠D+∠COD=2∠D,即∠ABC=∠ACO=∠BCO,再推出∠OAD+∠D=180°-138°=42°,得∠BAC+∠ACO=84°,根據(jù)三角形內(nèi)角和定理可得結果.【詳解】連接BO,由已知可得因為AO,CO平分∠BAC和∠BCA所以O是△ABC的內(nèi)心所以∠ABO=∠CBO=∠ABC因為AD=AB,OA=OA,∠BAO=∠DAO所以△BAO≌△DAO所以∠D=∠ABO所以∠ABC=2∠ABO=2∠D因為OC=CD所以∠D=∠COD所以∠ACO=∠BCO=∠D+∠COD=2∠D所以∠ABC=∠ACO=∠BCO因為∠AOD=138°所以∠OAD+∠D=180°-138°=42°所以2(∠OAD+∠D)=84°即∠BAC+∠ACO=84°所以∠ABC+∠BCO=180°-(∠BAC+∠ACO)=180°-84°=96°所以∠ABC=96°=48°故選:C【點睛】考核知識點:三角形的內(nèi)心.利用全等三角形性質(zhì)和角平分線性質(zhì)和三角形內(nèi)外角定理求解是關鍵.3、C【分析】根據(jù)方程解的定義,求出a-b,利用作圖代入的思想即可解決問題.【詳解】∵關于x的一元二次方程的解是x=?1,∴a?b+4=0,∴a?b=-4,∴2015?(a?b)=2215?(-4)=2019.故選C.【點睛】此題考查一元二次方程的解,解題關鍵在于掌握運算法則.4、B【分析】由于點B與點D關于AC對稱,所以連接BE,與AC的交點即為F,此時,F(xiàn)D+FE=BE最小,而BE是等邊三角形ABE的邊,BE=AB,由正方形面積可得AB的長,從而得出結果.【詳解】解:由題意可知當點P位于BE與AC的交點時,有最小值.設BE與AC的交點為F,連接BD,∵點B與點D關于AC對稱∴FD=FB∴FD+FE=FB+FE=BE最小又∵正方形ABCD的面積為16∴AB=1∵△ABE是等邊三角形∴BE=AB=1.故選:B.【點睛】本題考查的知識點是軸對稱中的最短路線問題,解題的關鍵是弄清題意,找出相對應的相等線段.5、B【分析】將每一句話進行分析和處理即可得出本題答案.【詳解】A.直徑是弦,正確.B.∵在同圓或等圓中,相等的圓心角所對的弧相等,∴相等的圓心角所對的弧相等,錯誤.C.弦的垂直平分線一定經(jīng)過圓心,正確.D.平分弧的半徑垂直于弧所對的弦,正確.故答案選:B.【點睛】本題考查了圓中弦、圓心角、弧度之間的關系,熟練掌握該知識點是本題解題的關鍵.6、C【分析】根據(jù)概率的意義,可知發(fā)生地震的概率是,說明發(fā)生地震的可能性大于不發(fā)生地震的可能性,從而可以解答本題.【詳解】∵某地質(zhì)學家預測:在未來的20年內(nèi),F(xiàn)市發(fā)生地震的概率是,∴未來20年內(nèi),F(xiàn)市發(fā)生地震的可能性比沒有發(fā)生地震的可能性大,故選C.【點睛】本題主要考查概率的意義,發(fā)生地震的概率是,說明發(fā)生地震的可能性大于不發(fā)生地政的可能性,這是解答本題的關鍵.7、B【分析】根據(jù)負數(shù)的絕對值是它的相反數(shù),可得出答案.【詳解】根據(jù)絕對值的性質(zhì)得:|-1|=1.故選B.【點睛】本題考查絕對值的性質(zhì),需要掌握非負數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù).8、D【分析】通過畫圖發(fā)現(xiàn),點的運動路線為以A為圓心、1為半徑的圓,當在對角線CA上時,C最小,先證明△PBC≌△BA,則A=PC=1,再利用勾股定理求對角線CA的長,則得出C的長.【詳解】如圖,當在對角線CA上時,C最小,連接CP,
由旋轉得:BP=B,∠PB=90°,
∴∠PBC+∠CB=90°,
∵四邊形ABCD為正方形,
∴BC=BA,∠ABC=90°,
∴∠AB+∠CB=90°,
∴∠PBC=∠AB,在△PBC和△BA中,,
∴△PBC≌△BA,
∴A=PC=1,
在Rt△ABC中,AB=BC=4,由勾股定理得:,∴C=AC-A=,即C長度的最小值為,故選:D.【點睛】本題考查了正方形的性質(zhì)、旋轉的性質(zhì)和最小值問題,尋找點的運動軌跡是本題的關鍵.9、C【分析】根據(jù)實際意義以及函數(shù)的解析式,根據(jù)函數(shù)的類型,以及自變量的取值范圍即可進行判斷.【詳解】解:當F一定時,P與S之間成反比例函數(shù),則函數(shù)圖象是雙曲線,同時自變量是正數(shù).故選:C.【點睛】此題主要考查了反比例函數(shù)的應用,現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數(shù)關系,然后利用實際意義確定其所在的象限.10、C【解析】試題解析:①和的底分別相等,高也相等,所以它們的面積也相等,故正確.②和的底分別相等,高也相等,所以它們的面積也相等,并不是倍的關系.故錯誤.③由于是的中點,所以和的相似比為,所以它們的面積之比為.故錯誤.④和的底相等,高和則是的關系,所以它們的面積之比為.故正確.綜上所述,符合題意的有①和④.故選C.11、B【分析】把一個數(shù)表示成的形式,其中,n是整數(shù),這種記數(shù)方法叫做科學記數(shù)法,根據(jù)科學記數(shù)法的要求即可解答.【詳解】0.00000065=,故選:B.【點睛】此題考察科學記數(shù)法,注意n的值的確定方法,當原數(shù)小于1時,n是負整數(shù),整數(shù)等于原數(shù)左起第一個非零數(shù)字前0的個數(shù),按此方法即可正確求解.12、C【分析】如圖,過點A作AC⊥x軸于點C,構建矩形ABOC,根據(jù)反比例函數(shù)系數(shù)k的幾何意義知|k|=四邊形ABOC的面積.【詳解】如圖,過點A作AC⊥x軸于點C.則四邊形ABOC是矩形,∴S=S=1,∴|k|=S=S+S=2,∴k=2或k=?2.又∵函數(shù)圖象位于第一象限,∴k>0,∴k=2.則反比函數(shù)解析式為.故選C.【點睛】此題考查反比例函數(shù)系數(shù)k的幾何意義,解題關鍵在于掌握反比例函數(shù)的性質(zhì).二、填空題(每題4分,共24分)13、1【分析】設線段a,b的比例中項為c,根據(jù)比例中項的定義可得c2=ab,代入數(shù)據(jù)可直接求出c的值,注意兩條線段的比例中項為正數(shù).【詳解】解:設線段a,b的比例中項為c,∵c是長度分別為4、16的兩條線段的比例中項,∴c2=ab=4×16,∴c2=64,∴c=1或-1(負數(shù)舍去),∴a、b的比例中項為1;故答案為:1.【點睛】本題主要考查了比例線段.掌握比例中項的定義,是解題的關鍵.14、1150cm1【分析】設將鐵絲分成xcm和(100﹣x)cm兩部分,則兩個正方形的邊長分別是cm,cm,再列出二次函數(shù),求其最小值即可.【詳解】如圖:設將鐵絲分成xcm和(100﹣x)cm兩部分,列二次函數(shù)得:y=()1+()1=(x﹣100)1+1150,由于>0,故其最小值為1150cm1,故答案為:1150cm1.【點睛】本題考查二次函數(shù)的最值問題,解題的關鍵是根據(jù)題意正確列出二次函數(shù).15、大【解析】因為二次函數(shù)的開口向上,所以點M,N向上平移時,距離對稱軸的距離越大,即MN的長度隨直線向上平移而變大,故答案為:大.16、1.【分析】求代數(shù)式的值,一元二次方程的解,一元二次方程根與系數(shù)的關系.【詳解】解:∵m、n是一元二次方程x2+2x-7=0的兩個根,∴m2+2m-7=0,即m2+2m=7;m+n=-2.∴m2+1m+n=(m2+2m)+(m+n)=7-2=1.故答案為:117、【解析】根據(jù)一元二次方程的解的定義,將x=2代入已知方程,列出關于q的新方程,通過解該方程即可求得q的值.【詳解】∵x=2是方程x2-3x+q=0的一個根,
∴x=2滿足該方程,
∴22-3×2+q=0,
解得,q=2.
故答案為2.【點睛】本題考查了方程的解的定義.一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.18、【解析】設DE=x,則OE=2x,根據(jù)矩形的性質(zhì)可得OC=OD=3x,在直角三角形OEC中:可求得CE=x,即可求得x=,即DE的長為.【詳解】∵四邊形ABCD是矩形∴OC=AC=BD=OD設DE=x,則OE=2x,OC=OD=3x,∵,∴∠OEC=90°在直角三角形OEC中=5∴x=即DE的長為.故答案為:【點睛】本題考查的是矩形的性質(zhì)及勾股定理,掌握矩形的性質(zhì)并靈活的使用勾股定理是解答的關鍵.三、解答題(共78分)19、(1)A;(2)B【分析】(1)作軸于點,則,,求得AD=1,根據(jù)勾股定理求得OD=,即可得出點A的坐標;(2)連接BO,過點作軸于點,根據(jù)旋轉角為75°,可得∠BOE=30°,根據(jù)勾股定理可得,再根據(jù)Rt△BOD中,,,可得點B的坐標.【詳解】解:(1)如圖1,作軸于點,則,,點的坐標為.圖1(2)如圖2,連接,過點作軸于點,則,在中,在中,,點的坐標為.圖2【點睛】本題主要考查了旋轉變換以及正方形的性質(zhì),解決問題的關鍵是作輔助線構造直角三角形,解題時注意:正方形的四條邊都相等,四個角都是直角.20、(1)正比例函數(shù)、反比例函數(shù)的表達式為:,;(2)B點坐標是(-2,-1)【解析】試題分析:(1)把點A、B的坐標分別代入函數(shù)y=k1x(k1≠0)與函數(shù)中求出k1和k2的值,即可得到兩個函數(shù)的解析式;(2)把(1)中所得兩個函數(shù)的解析式組成方程組,解方程組即可得到點B的坐標.試題解析:解:(1)把點A(2,1)分別代入y=k1x與可得:,k2=2,∴正比例函數(shù)、反比例函數(shù)的表達式分別為:,;(2)由題意得方程組:,解得:,,∴點B的坐標是(-2,-1).21、見解析【分析】直接利用三視圖的畫法分別從不同角度得出答案.【詳解】解:如圖所示:【點睛】此題主要考查了作三視圖,正確把握觀察角度是解題關鍵.22、(1),點坐標為;(2)點的坐標為;(3)①;②當為-2時,四邊形的面積最大,最大值為4.【分析】(1)用待定系數(shù)法即可求出拋物線解析式,然后化為頂點式求出點D的坐標即可;(2)利用軸對稱-最短路徑方法確定點M,然后用待定系數(shù)法求出直線AC的解析式,進而可求出點M的坐標;(3)①先求出直線AD的解析式,表示出點F、G、P的坐標,進而表示出FG和FP的長度,然后即可判斷出線段與的數(shù)量關系;②根據(jù)割補法分別求出△AED和△ACD的面積,然后根據(jù)列出二次函數(shù)解析式,利用二次函數(shù)的性質(zhì)求解即可.【詳解】解:(1)由拋物線與軸交于,兩點得,解得,故拋物線解析式為,由得點坐標為;(2)在直線上存在一點,到點的距離與到點的距離之和最小.根據(jù)拋物線對稱性,∴,∴使的值最小的點應為直線與對稱軸的交點,當時,,∴,設直線解析式為直線,把、分別代入得,解之得:,∴直線解析式為,把代入得,,∴,即當點到點的距離與到點的距離之和最小時的坐標為;(3)①,理由為:設直線解析式為,把、分別代入直線得,解之得:,∴直線解析式為,則點的坐標為,同理的坐標為,則,,∴;②∵,,,∴AO=3,DM=2,∴S△ACD=S△ADM+S△CDM=.設點的坐標為,,∴,∴當為-2時,的最大值為1.∴,∴當為-2時,四邊形的面積最大,最大值為4.【點睛】本題考查了待定系數(shù)法求函數(shù)解析式,一般式與頂點式的互化,軸對稱最短的性質(zhì),坐標與圖形的性質(zhì),三角形的面積公式,割補法求圖形的面積,以及二次函數(shù)的性質(zhì),熟練掌握待定系數(shù)法和二次函數(shù)的性質(zhì)是解答本題的關鍵.23、(1)不可能;隨機;;(2).【分析】(1)根據(jù)隨機事件和不可能事件的概念及概率公式解答可得;
(2)列舉出所有情況,看所求的情況占總情況的多少即可.【詳解】(1)小剛不在班主任決定的名同學(小明、小山、小月、小玉)之中,所以“小剛被抽中”是不可能事件;“小明被抽中”是隨機事件,第一次抽取卡片有4種等可能結果,其中小玉被抽中的有1種結果,所以第一次抽取卡片抽中是小玉的概率是;故答案為:不可能、隨機、;(2)解:A表示小明,B表示小山,C表示小月,D表示小玉,則畫樹狀圖為:共有12種等可能的結果數(shù),其中抽到C有6種,∴P(抽中小月)=.【點睛】本題主要考查了樹狀圖或列表法求概率,列表法可以不重復不遺漏地列出所有可能的結果,適用于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.24、(1)211-21x;(2)12元.【解析】試題分析:(1)如果設每件商品提高x元,即可用x表示出每天的銷售量;(2)根據(jù)總利潤=單價利潤×銷售量列出關于x的方程,進而求出未知數(shù)的值.試題解析:解:(1)211-21x;(2)根據(jù)題意,得(11-8+x)(211-21x)=711,整理得x2-8x+12=1,解得x1=2,x2=3,因為要采取提高售價,減少售貨量的方法增加利潤,所以取x=2.所以售價為11+2=12(元),答:售價為12元.點睛:此題考查了一元二次方程在實際生活中的應用.解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 長方形和正方形的面積計算(教案)蘇教版三年級下冊數(shù)學
- 構件運輸物流合同范例
- 廠家銷售合同范例
- 軟件嵌入合同范例
- 項目管理托管合同范例
- 獨立插畫師合作合同范例
- skf軸承采購合同范例
- 2019年春 八年級下冊 物理 人教版 教案:9.2-液體的壓強
- 順德職業(yè)技術學院《高級巖礦鑒定》2023-2024學年第一學期期末試卷
- 建筑鋼結構勞務分包協(xié)議
- 課堂教學問卷調(diào)查(學生).
- 挖掘機液壓系統(tǒng)講解課件
- 課程設計--高位自卸汽車的設計
- 管道安裝工程清單價格
- 四川省普教科研資助金課題檢測報告
- 古傳五禽戲內(nèi)功法詳解(圖)
- 粵西茂名許氏源流考
- 關于房屋裝飾裝修價值評估的探討
- 六十仙命配二十四山吉兇選擇一覽表
- 小型辦公系統(tǒng)(數(shù)據(jù)庫課程設計)word格式
- 模擬通信系統(tǒng)(PM調(diào)制)Matlab仿真平臺的設計與實現(xiàn)
評論
0/150
提交評論