版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.二次函數(shù)y=ax2+bx+4(a≠0)中,若b2=4a,則()A.y最大=5 B.y最小=5 C.y最大=3 D.y最?。?2.如圖,已知AB∥CD∥EF,AC=4,CE=1,BD=3,則DF的值為()A. B. C. D.13.已知三點在拋物線上,則的大小關(guān)系正確的是()A. B.C. D.4.為測量如圖所示的斜坡墊的傾斜度,小明畫出了斜坡墊的側(cè)面示意圖,測得的數(shù)據(jù)有:,則該斜坡墊的傾斜角的正弦值是()A. B. C. D.5.如圖,在平面直角坐標(biāo)系中,點,y是關(guān)于的二次函數(shù),拋物線經(jīng)過點.拋物線經(jīng)過點拋物線經(jīng)過點拋物線經(jīng)過點則下列判斷:①四條拋物線的開口方向均向下;②當(dāng)時,四條拋物線表達(dá)式中的均隨的增大而增大;③拋物線的頂點在拋物線頂點的上方;④拋物線與軸交點在點的上方.其中正確的是A.①②④ B.①③④C.①②③ D.②③④6.如圖,在圓O中,弦AB=4,點C在AB上移動,連接OC,過點C作CD⊥OC交圓O于點D,則CD的最大值為()A. B.2 C. D.7.已知二次函數(shù)y=a(x﹣h)2+k(a>0),其圖象過點A(0,2),B(8,3),則h的值可以是()A.6 B.5 C.4 D.38.關(guān)于反比例函數(shù)y=﹣的圖象,下列說法正確的是()A.經(jīng)過點(﹣1,﹣4)B.圖象是軸對稱圖形,但不是中心對稱圖形C.無論x取何值時,y隨x的增大而增大D.點(,﹣8)在該函數(shù)的圖象上9.如圖,AC是⊙O的內(nèi)接正四邊形的一邊,點B在弧AC上,且BC是⊙O的內(nèi)接正六邊形的一邊.若AB是⊙O的內(nèi)接正n邊形的一邊,則n的值為()A.6 B.8 C.10 D.1210.如圖,O為原點,點A的坐標(biāo)為(3,0),點B的坐標(biāo)為(0,4),⊙D過A、B、O三點,點C為上一點(不與O、A兩點重合),則cosC的值為()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在邊長為的等邊三角形ABC中,以點A為圓心的圓與邊BC相切,與邊AB、AC相交于點D、E,則圖中陰影部分的面積為_______.12.如圖,在四邊形中,,,則的度數(shù)為______.13.某商場購進(jìn)一批單價為16元的日用品,若按每件20元的價格銷售,每月能賣出360件,若按每件25元的價格銷售,每月能賣210件,假定每月銷售件數(shù)y(件)與每件的銷售價格x(元/件)之間滿足一次函數(shù).在商品不積壓且不考慮其他因素的條件下,銷售價格定為______元時,才能使每月的毛利潤w最大,每月的最大毛利潤是為_______元.14.分解因式:.15.如圖,為了測量某棵樹的高度,小明用長為2m的竹竿做測量工具,移動竹竿,使竹竿、樹的頂端的影子恰好落在地面的同一點.此時,竹竿與這一點距離相距6m,與樹相距15m,則樹的高度為_________m.16.b和2的比例中項是4,則b=__.17.婷婷和她媽媽玩猜拳游戲.規(guī)定每人每次至少要出一個手指,兩人出拳的手指數(shù)之和為偶數(shù)時婷婷獲勝.那么,婷婷獲勝的概率為______.18.若是方程的一個根.則的值是________.三、解答題(共66分)19.(10分)如圖,在四邊形中,∥,=2,為的中點,請僅用無刻度的直尺分別按下列要求畫圖(保留作圖痕跡)(1)在圖1中,畫出△ABD的BD邊上的中線;(2)在圖2中,若BA=BD,畫出△ABD的AD邊上的高.20.(6分)已知函數(shù),(m,n,k為常數(shù)且≠0)(1)若函數(shù)的圖像經(jīng)過點A(2,5),B(-1,3)兩個點中的其中一個點,求該函數(shù)的表達(dá)式.(2)若函數(shù),的圖像始終經(jīng)過同一個定點M.①求點M的坐標(biāo)和k的取值②若m≤2,當(dāng)-1≤x≤2時,總有≤,求m+n的取值范圍.21.(6分)如圖是二次函數(shù)y=(x+m)2+k的圖象,其頂點坐標(biāo)為M(1,﹣4)(1)求出圖象與x軸的交點A、B的坐標(biāo);(2)在二次函數(shù)的圖象上是否存在點P,使S△PAB=S△MAB?若存在,求出點P的坐標(biāo);若不存在,請說明理由.22.(8分)解下列方程:(1)(y﹣1)2﹣4=1;(2)3x2﹣x﹣1=1.23.(8分)將一元二次方程化為一般形式,并求出根的判別式的值.24.(8分)如圖,在中,是邊上的一點,若,求證:.25.(10分)如圖,四邊形中的三個頂點在⊙上,是優(yōu)弧上的一個動點(不與點、重合).(1)當(dāng)圓心在內(nèi)部,∠ABO+∠ADO=70°時,求∠BOD的度數(shù);(2)當(dāng)點A在優(yōu)弧BD上運(yùn)動,四邊形為平行四邊形時,探究與的數(shù)量關(guān)系.26.(10分)如圖,BD是△ABC的角平分線,點E位于邊BC上,已知BD是BA與BE的比例中項.(1)求證:∠CDE=∠ABC;(2)求證:AD?CD=AB?CE.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)題意得到y(tǒng)=ax2+bx+4=,代入頂點公式即可求得.【詳解】解:∵b2=4a,∴,∴∵,∴y最小值=,故選:D.【點睛】本題考查了二次函數(shù)最值問題,解決本題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì),準(zhǔn)確表達(dá)出二次函數(shù)的頂點坐標(biāo).2、C【分析】根據(jù)平行線分線段成比例定理即可得出結(jié)論.【詳解】解:∵直線AB∥CD∥EF,AC=4,CE=1,BD=3,∴即,解得DF=.
故選:C.【點睛】本題考查的是平行線分線段成比例定理,熟知三條平行線截兩條直線,所得的對應(yīng)線段成比例是解答此題的關(guān)鍵.3、B【分析】先確定拋物線的對稱軸,然后根據(jù)拋物線的對稱性求出點關(guān)于對稱軸對稱的點的坐標(biāo),再利用二次函數(shù)的增減性判斷即可.【詳解】解:∵拋物線的對稱軸是直線x=2,∴點關(guān)于對稱軸對稱的點的坐標(biāo)是,∵當(dāng)x<2時,y隨x的增大而增大,且0<1<1.5,∴.故選:B.【點睛】本題考查了二次函數(shù)的性質(zhì),屬于基本題型,熟練掌握二次函數(shù)的性質(zhì)是解答的關(guān)鍵.4、A【分析】利用正弦值的概念,的正弦值=進(jìn)行計算求解.【詳解】解:∵∴在Rt△ABC中,故選:A.【點睛】本題考查銳角三角函數(shù)的概念,熟練掌握正弦值的概念,熟記的正弦值=是本題的解題關(guān)鍵.5、A【分析】根據(jù)BC的對稱軸是直線x=1.5,的對稱軸是直線x=1,畫大致示意圖,即可進(jìn)行判定.【詳解】解:①由可知,四條拋物線的開口方向均向下,故①正確;②和的對稱軸是直線x=1.5,和的對稱軸是直線x=1,開口方向均向下,所以當(dāng)時,四條拋物線表達(dá)式中的均隨的增大而增大,故②正確;③和的對稱軸都是直線x=1.5,D關(guān)于直線x=1.5的對稱點為(-1,-2),而A點坐標(biāo)為(-2,-2),可以判斷比更陡,所以拋物線的頂點在拋物線頂點的下方,故③錯誤;④的對稱軸是直線x=1,C關(guān)于直線x=1的對稱點為(-1,3),可以判斷出拋物線與軸交點在點的上方,故④正確.故選:A.【點睛】本題考查了二次函數(shù)的圖象和性質(zhì),根據(jù)對稱點找到對稱軸是解題的關(guān)鍵,充分運(yùn)用數(shù)形結(jié)合的思想能使解題更加簡便.如果逐個計算出解析式,工作量顯然更大.6、B【分析】連接OD,利用勾股定理得到CD,利用垂線段最短得到當(dāng)OC⊥AB時,OC最小,根據(jù)垂徑定理計算即可.【詳解】連接OD,如圖,設(shè)圓O的半徑為r,∵CD⊥OC,∴∠DCO=90°,∴CD=,∴當(dāng)OC的值最小時,CD的值最大,而OC⊥AB時,OC最小,此時D、B重合,則由垂徑定理可得:CD=CB=AC=AB=1,∴CD的最大值為1.故答案為:1.【點睛】本題考查垂徑定理和勾股定理,作輔助線構(gòu)造直角三角形應(yīng)用勾股定理,并熟記垂徑定理內(nèi)容是解題的關(guān)鍵.7、D【解析】解:根據(jù)題意可得當(dāng)0<x<8時,其中有一個x的值滿足y=2,則對稱軸所在的位置為0<h<4故選:D【點睛】本題考查二次函數(shù)的性質(zhì),利用數(shù)形結(jié)合思想解題是關(guān)鍵.8、D【分析】反比例函數(shù)的圖象時位于第一、三象限,在每個象限內(nèi),y隨x的增大而減??;時位于第二、四象限,在每個象限內(nèi),y隨x的增大而增大;在不同象限內(nèi),y隨x的增大而增大,根據(jù)這個性質(zhì)選擇則可.【詳解】∵當(dāng)時,∴點(,﹣8)在該函數(shù)的圖象上正確,故A、B、C錯誤,不符合題意.故選:D.【點睛】本題考查了反比例函數(shù)的性質(zhì),掌握反比例函數(shù)的性質(zhì)及代入求點坐標(biāo)是解題的關(guān)鍵.9、D【分析】連接AO、BO、CO,根據(jù)中心角度數(shù)=360°÷邊數(shù)n,分別計算出∠AOC、∠BOC的度數(shù),根據(jù)角的和差則有∠AOB=30°,根據(jù)邊數(shù)n=360°÷中心角度數(shù)即可求解.【詳解】連接AO、BO、CO,∵AC是⊙O內(nèi)接正四邊形的一邊,∴∠AOC=360°÷4=90°,∵BC是⊙O內(nèi)接正六邊形的一邊,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故選:D.【點睛】本題考查正多邊形和圓,解題的關(guān)鍵是根據(jù)正方形的性質(zhì)、正六邊形的性質(zhì)求出中心角的度數(shù).10、D【詳解】如圖,連接AB,由圓周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故選D.二、填空題(每小題3分,共24分)11、【分析】首先求得圓的半徑,根據(jù)陰影部分的面積=△ABC的面積?扇形ADE的面積即可求解.【詳解】解:設(shè)以點A為圓心的圓與邊BC相切于點F,連接AF,如圖所示:
則AF⊥BC,
∵△ABC是等邊三角形,
∴∠B=60°,BC=AB=,
∴AF=AB?sin60°=×=3,
∴陰影部分的面積=△ABC的面積?扇形ADE的面積=××3?=.
故答案為:.【點睛】本題主要考查了扇形的面積的計算、三角函數(shù)、切線的性質(zhì)、等邊三角形的性質(zhì);熟練掌握切線的性質(zhì),由三角函數(shù)求出AF是解決問題的關(guān)鍵.12、18°【分析】根據(jù)題意可知A、B、C、D四點共圓,由余角性質(zhì)求出∠DBC的度數(shù),再由同弧所對的圓周角相等,即為所求.【詳解】解:∵在四邊形中,,∴A、B、C、D四點在同一個圓上,∵∠ABC=90°,,∴∠CBD=18°,∴∠CAD=∠CBD=18°故答案為:18°【點睛】本題考查的是四點共圓、互為余角的概念和同圓中同弧所對的圓周角相等.13、241【分析】本題首先通過待定系數(shù)法求解y與x的關(guān)系式,繼而根據(jù)利潤公式求解二次函數(shù)表達(dá)式,最后根據(jù)二次函數(shù)性質(zhì)求解本題.【詳解】由題意假設(shè),將,代入一次函數(shù)可得:,求解上述方程組得:,則,∵,∴,∴,又因為商品進(jìn)價為16元,故.銷售利潤,整理上式可得:銷售利潤,由二次函數(shù)性質(zhì)可得:當(dāng)時,取最大值為1.故當(dāng)銷售單價為24時,每月最大毛利潤為1元.【點睛】本題考查二次函數(shù)的利潤問題,解題關(guān)鍵在于理清題意,按照題目要求,求解二次函數(shù)表達(dá)式,最后根據(jù)二次函數(shù)性質(zhì)求解此類型題目.14、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應(yīng)用平方差公式分解即可:.考點:提公因式法和應(yīng)用公式法因式分解.15、7【解析】設(shè)樹的高度為m,由相似可得,解得,所以樹的高度為7m16、1.【分析】根據(jù)題意,b與2的比例中項為4,也就是b:4=4:2,然后再進(jìn)一步解答即可.【詳解】根據(jù)題意可得:B:4=4:2,解得b=1,故答案為:1.【點睛】本題主要考查了比例線段,解題本題的關(guān)鍵是理解兩個數(shù)的比例中項,然后列出比例式進(jìn)一步解答.17、【分析】根據(jù)題意,可用列舉法、列表法或樹狀統(tǒng)計圖來計算出總次數(shù)和婷婷獲勝的次數(shù),從而求出婷婷獲勝的概率【詳解】解:根據(jù)題意,一共有25個等可能的結(jié)果,即(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5);兩人出拳的手指數(shù)之和為偶數(shù)的結(jié)果有13個,所以婷婷獲勝的概率為故答案為:【點睛】本題考查的是用列舉法等來求概率,找出所有可能的結(jié)果數(shù)和滿足要求的結(jié)果數(shù)是解決問題的關(guān)鍵.18、【解析】根據(jù)一元二次方程的解的定義,將x=2代入已知方程,列出關(guān)于q的新方程,通過解該方程即可求得q的值.【詳解】∵x=2是方程x2-3x+q=0的一個根,
∴x=2滿足該方程,
∴22-3×2+q=0,
解得,q=2.
故答案為2.【點睛】本題考查了方程的解的定義.一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.三、解答題(共66分)19、(1)作圖見解析;(2)作圖見解析.【分析】(1)根據(jù)AB=2CD,AB=BE,可知BE=CD,再根據(jù)BE//CD,可知連接CE,CE與BD的交點F即為BD的中點,連接AF,則AF即為△ABD的BD邊上的中線;(2)由(1)可知連接CE與BD交于點F,則F為BD的中點,根據(jù)三角形中位線定理可得EF//AD,EF=AD,則可得四邊形ADFE要等腰梯形,連接AF,DE交于點O,根據(jù)等腰梯形的性質(zhì)可推導(dǎo)得出OA=OD,再結(jié)合BA=BD可知直線BO是線段AD的垂直平分線,據(jù)此即可作出可得△ABD的AD邊上的高.【詳解】(1)如圖AF是△ABD的BD邊上的中線;(2)如圖AH是△ABD的AD邊上的高.【點睛】本題考查了利用無刻度的直尺按要求作圖,結(jié)合題意認(rèn)真分析圖形的成因是解題的關(guān)鍵.20、(1);(2)①M(fèi)(2,3),k=3;②【分析】(1)將兩點代入解析式即可得出結(jié)果;(2)①二次函數(shù)過某定點,則函數(shù)表達(dá)式與字母系數(shù)無關(guān),以此解決問題;②根據(jù)二次函數(shù)的性質(zhì)解題【詳解】解:(1)①若函數(shù)圖象經(jīng)過點A(2,5),將A(2,5)代入得,不成立②若函數(shù)圖象經(jīng)過點B(-1,3),將B(-1,3)代入得,解得.∴.(2)①過定點M,與m無關(guān),故,代入,得點M為(2,3),也過點M,代入得,解得k=3.②在時,.,則,∴,即.∵,∴,∴,,∴.【點睛】此題考查含字母系數(shù)的二次函數(shù)綜合題,掌握二次函數(shù)的圖像與性質(zhì)是解題的基礎(chǔ).21、(1)A(﹣1,0),B(3,0);(2)存在合適的點P,坐標(biāo)為(4,5)或(﹣2,5).【解析】試題分析:(1)由二次函數(shù)y=(x+m)2+k的頂點坐標(biāo)為M(1,﹣4)可得解析式為:,解方程:可得點A、B的坐標(biāo);(2)設(shè)點P的縱坐標(biāo)為,由△PAB與△MAB同底,且S△PAB=S△MAB,可得:,從而可得=,結(jié)合點P在拋物線的圖象上,可得=5,由此得到:,解方程即可得到點P的坐標(biāo).試題解析:(1)∵拋物線解析式為y=(x+m)2+k的頂點為M(1,﹣4)∴,當(dāng)y=0時,(x﹣1)2﹣4=0,解得x1=3,x2=﹣1,∴A(﹣1,0),B(3,0);(2)∵△PAB與△MAB同底,且S△PAB=S△MAB,∴,即=,又∵點P在y=(x﹣1)2﹣4的圖象上,∴yP≥﹣4,∴=5,則,解得:,∴存在合適的點P,坐標(biāo)為(4,5)或(﹣2,5).22、(1)y1=3,y2=﹣1;(2)x1=,x2=.【分析】(1)先移項,然后利用直接開方法解一元二次方程即可;(2)利用公式法解一元二次方程即可.【詳解】解:(1)(y﹣1)2﹣4=1,(y﹣1)2=4,y﹣1=±2,y=±2+1,y1=3,y2=﹣1;(2)3x2﹣x﹣1=1,a=3,b=﹣1,c=﹣1,△=b2﹣4ac=(﹣1)2﹣4×3×(﹣1)=13>1,x=,x1=,x2=.【點睛】此題考查的是解一元二次方程,掌握利用直接開方法和公式法解一元二次方程是解決此題的關(guān)鍵.23、,-8【分析】先移項,將方程化為一般式,然后算判別式的大小可得.【詳解】解:將方程化為一般形式為:∴a=3,b=-2,c=1∴根的判別式的值為.【點睛】本題考查一元二次方程的化簡和求解判別式,注意此題的判別式為負(fù)數(shù),即表示方程無實數(shù)根.24、見解析【分析】根據(jù)相似三角形的判定,由題意可得,進(jìn)而根據(jù)相似三角形的性質(zhì),可得,推論即可得出結(jié)論.【詳解】證明:∵,∴,∴,即.【點睛】本題主要考察了相似三角形的判定以及性質(zhì),靈活運(yùn)用相關(guān)性質(zhì)是解題的關(guān)鍵.25、(1)140°;(2)當(dāng)點A在優(yōu)弧BD上運(yùn)動,四邊形為平行四邊形時,點O在∠BAD內(nèi)部時,+=60°;點O在∠BAD外部時,|-|=60°.【解析】(1)連接OA,如圖1,根據(jù)等腰三角形的性質(zhì)得∠OAB=∠ABO,∠OAD=∠ADO,則∠OAB+∠OAD=∠ABO+∠ADO=70°,然后根據(jù)圓周角定理易得∠BOD=2∠BAD=140°;(2)分點O在∠BAD內(nèi)部和外部兩種情形分類討論:①當(dāng)點O在∠BAD內(nèi)部時,首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度數(shù),進(jìn)而求出∠BAD的度數(shù);最后根據(jù)平行四邊形的性質(zhì),求出∠OBC、∠ODC的度數(shù),再根據(jù)∠ABC+∠ADC=180°,求出∠OBA+∠ODA等于多少即可.②當(dāng)點O在∠BAD外部時:Ⅰ、首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度數(shù),進(jìn)而求出∠BAD的度數(shù);最后根據(jù)OA=OD,OA=OB,判斷出∠OAD=∠ODA,∠OAB=∠OBA,進(jìn)而判斷出∠OBA=∠ODA+60°即可.Ⅱ、首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度數(shù),進(jìn)而求出∠BAD的度數(shù);最后根據(jù)OA=OD,OA=OB,判斷出∠OAD=∠ODA,∠OAB=∠OBA,進(jìn)而判斷出∠ODA=∠OBA+60°即可.【詳解】(1)連接OA,如圖1,∵OA=OB,OA=OD,∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠OAB+∠OAD=∠ABO+∠ADO=70°,即∠BAD=70°,∴∠BOD=2∠BAD=140°;(2)①如圖2,,∵四邊形OBCD為平行四邊形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OBC=∠ODC=180°-120°=60°,又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=180°-(∠OBC+∠ODC)=180°-(60°+60°)=180°-120°=60°②Ⅰ、如圖3,,∵四邊形OBCD為平行四邊形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD+∠BAD=∠OAD+60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA-∠ODA=60°.Ⅱ、如圖4,,∵四邊形OBCD為平行四
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度呈現(xiàn)大全【職員管理】十篇
- 《客房清掃程序》課件
- 《番茄晚疫病》課件
- 《四年級下語文總結(jié)》與《四年級本學(xué)期的總結(jié)》與《四年級本學(xué)期的總結(jié)反思》范文匯編
- 復(fù)習(xí)培優(yōu)卷03 第5單元(解析版)
- 第5單元+國防建設(shè)與外交成就
- 軟件開發(fā)委托合同三篇
- 農(nóng)業(yè)投資盈利之路
- 設(shè)計裝修銷售工作總結(jié)
- 游戲行業(yè)前臺工作總結(jié)
- MOOC 社會保障學(xué)-江西財經(jīng)大學(xué) 中國大學(xué)慕課答案
- MOOC 理論力學(xué)-國防科技大學(xué) 中國大學(xué)慕課答案
- 城市規(guī)劃設(shè)計計費(fèi)指導(dǎo)意見(2004年)
- 制造業(yè)成本精細(xì)化管理
- 工業(yè)互聯(lián)網(wǎng)標(biāo)準(zhǔn)體系(版本3.0)
- 初中生物老師經(jīng)驗交流課件
- 柴油發(fā)電機(jī)組采購施工 投標(biāo)方案(技術(shù)方案)
- 股權(quán)招募計劃書
- 創(chuàng)業(yè)之星學(xué)創(chuàng)杯經(jīng)營決策常見問題匯總
- 公豬站工作總結(jié)匯報
- 醫(yī)學(xué)專業(yè)醫(yī)學(xué)統(tǒng)計學(xué)試題(答案見標(biāo)注) (三)
評論
0/150
提交評論