2023屆蘇州高新區(qū)實驗數(shù)學(xué)九上期末檢測模擬試題含解析_第1頁
2023屆蘇州高新區(qū)實驗數(shù)學(xué)九上期末檢測模擬試題含解析_第2頁
2023屆蘇州高新區(qū)實驗數(shù)學(xué)九上期末檢測模擬試題含解析_第3頁
2023屆蘇州高新區(qū)實驗數(shù)學(xué)九上期末檢測模擬試題含解析_第4頁
2023屆蘇州高新區(qū)實驗數(shù)學(xué)九上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.已知⊙O的直徑為12cm,如果圓心O到一條直線的距離為7cm,那么這條直線與這個圓的位置關(guān)系是()A.相離 B.相切 C.相交 D.相交或相切2.如圖,反比例函數(shù)第一象限內(nèi)的圖象經(jīng)過的頂點,,,且軸,點,,的橫坐標分別為1,3,若,則的值為()A.1 B. C. D.23.計算的結(jié)果是A.﹣3 B.3 C.﹣9 D.94.若將半徑為12cm的半圓形紙片圍成一個圓錐的側(cè)面,則這個圓錐的底面圓半徑是()A.2cm B.3cm C.4cm D.6cm5.如圖,直線y=x+3與x、y軸分別交于A、B兩點,則cos∠BAO的值是()A. B. C. D.6.已知關(guān)于的方程,若,則該方程一定有一個根為()A.-1 B.0 C.1 D.1或-17.對于二次函數(shù),下列描述錯誤的是().A.其圖像的對稱軸是直線=1 B.其圖像的頂點坐標是(1,-9)C.當=1時,有最小值-8 D.當>1時,隨的增大而增大8.如圖,在平面直角坐標中,正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,點A,B,E在x軸上.若正方形ABCD的邊長為2,則點F坐標為()A.(8,6) B.(9,6) C. D.(10,6)9.如圖,在△ABC中,DE∥BC,若=,則的值為()A. B. C. D.10.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.11.如圖,點B,C,D在⊙O上,若∠BCD=30°,則∠BOD的度數(shù)是()A.75° B.70° C.65° D.60°12.如圖,將一個Rt△ABC形狀的楔子從木樁的底端點P處沿水平方向打入木樁底下,使木樁向上運動,已知楔子斜面的傾斜角為20°,若楔子沿水平方向前移8cm(如箭頭所示),則木樁上升了()A.8tan20° B. C.8sin20° D.8cos20°二、填空題(每題4分,共24分)13.一個不透明的袋中裝有除顏色外均相同的8個黑球、4個白球和若干個紅球.每次搖勻后隨機摸出一個球,記下顏色后再放回袋中,通過大量重復(fù)摸球試驗后,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定于0.4,由此可估計袋中約有紅球_____個.14.已知函數(shù)的圖象如圖所示,點P是y軸負半軸上一動點,過點P作y軸的垂線交圖象于A、B兩點,連接OA、OB.下列結(jié)論;①若點M1(x1,y1),M2(x2,y2)在圖象上,且x1<x2<0,則y1<y2;②當點P坐標為(0,﹣3)時,△AOB是等腰三角形;③無論點P在什么位置,始終有S△AOB=7.5,AP=4BP;④當點P移動到使∠AOB=90°時,點A的坐標為(2,﹣).其中正確的結(jié)論為___.15.如圖,直線y=k1x+b與雙曲線交于A、B兩點,其橫坐標分別為1和5,則不等式k1x<+b的解集是▲.16.如圖,直線交x軸于點A,交y軸于點B,點P是x軸上一動點,以點P為圓心,以1個單位長度為半徑作⊙P,當⊙P與直線AB相切時,點P的坐標是______.17.已知點與點,兩點都在反比例函數(shù)的圖象上,且<<,那么______________.(填“>”,“=”,“<”)18.關(guān)于x的方程2x2-ax+1=0一個根是1,則它的另一個根為________.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,直線與軸交于點,與軸交于點,且與反比例函數(shù)在第一象限的圖象交于點,軸于點,.(1)求點的坐標;(2)動點在軸上,軸交反比例函數(shù)的圖象于點.若,求點的坐標.20.(8分)如圖,拋物線y=x2+bx-2與x軸交于A、B兩點,與y軸交于C點,且A(一1,0).⑴求拋物線的解析式及頂點D的坐標;⑵判斷△ABC的形狀,證明你的結(jié)論;⑶點M(m,0)是x軸上的一個動點,當CM+DM的值最小時,求m的值.21.(8分)如圖示,在中,,,,求的面積.22.(10分)已知某二次函數(shù)圖象上部分點的橫坐標、縱坐標的對應(yīng)值如下表.求此函數(shù)表達式.23.(10分)如圖,在△ABC中,AB=AC,點D、E在邊BC上,∠DAE=∠B=30°,且,那么的值是______.24.(10分)如圖,已知△ABC中,AB=8,BC=10,AC=12,D是AC邊上一點,且AB2=AD?AC,連接BD,點E、F分別是BC、AC上兩點(點E不與B、C重合),∠AEF=∠C,AE與BD相交于點G.(1)求BD的長;(2)求證△BGE∽△CEF;(3)連接FG,當△GEF是等腰三角形時,直接寫出BE的所有可能的長度.25.(12分)如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C1,平移△ABC,若點A的對應(yīng)點A2的坐標為(0,﹣4),畫出平移后對應(yīng)的△A2B2C2;(2)若將△A1B1C1繞某一點旋轉(zhuǎn)可以得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標.26.如圖,拋物線交軸于點和點,交軸于點.(1)求這個拋物線的函數(shù)表達式;(2)若點的坐標為,點為第二象限內(nèi)拋物線上的一個動點,求四邊形面積的最大值.

參考答案一、選擇題(每題4分,共48分)1、A【分析】這條直線與這個圓的位置關(guān)系只要比較圓心到直線的距離與半徑的大小關(guān)系即可.【詳解】∵⊙O的直徑為12cm,∴⊙O的半徑r為6cm,如果圓心O到一條直線的距離d為7cm,d>r,這條直線與這個圓的位置關(guān)系是相離.故選擇:A.【點睛】本題考查直線與圓的位置關(guān)系問題,掌握點到直線的距離與半徑的關(guān)系是關(guān)鍵.2、C【分析】先表示出CD,AD的長,然后在Rt△ACD中利用∠ACD的正切列方程求解即可.【詳解】過點作,∵點、點的橫坐標分別為1,3,且,均在反比例函數(shù)第一象限內(nèi)的圖象上,∴,,∴CD=2,AD=k-,∵,,,∴,,∵tan∠ACD=,∴,即,∴.故選:C.【點睛】本題考查了等腰三角形的性質(zhì),解直角三角形,以及反比例函數(shù)圖像上點的坐標特征,熟練掌握各知識點是解答本題的關(guān)鍵.3、B【分析】利用二次根式的性質(zhì)進行化簡即可.【詳解】=|﹣3|=3.故選B.4、D【解析】解:圓錐的側(cè)面展開圖的弧長為2π×12÷2=12π(cm),∴圓錐的底面半徑為12π÷2π=6(cm),故選D.5、A【解析】∵在中,當時,;當時,解得;∴點A、B的坐標分別為(-4,0)和(0,3),∴OA=4,OB=3,又∵∠AOB=90°,∴AB=,∴cos∠BAO=.故選A.6、C【分析】由題意將變形為并代入原方程左邊,再將方程左邊因式分解即可.【詳解】解:依題意得,原方程化為,即,∴,∴為原方程的一個根.故選:C.【點睛】本題考查一元二次方程解的定義.注意掌握方程的解是使方程左右兩邊成立的未知數(shù)的值.7、C【分析】將解析式寫成頂點式的形式,再依次進行判斷即可得到答案.【詳解】=,∴圖象的對稱軸是直線x=1,故A正確;頂點坐標是(1,-9),故B正確;當x=1時,y有最小值-9,故C錯誤;∵開口向上,∴當>1時,隨的增大而增大,故D正確,故選:C.【點睛】此題考查函數(shù)的性質(zhì),熟記每種函數(shù)解析式的性質(zhì)是解題的關(guān)鍵.8、B【分析】直接利用位似圖形的性質(zhì)結(jié)合相似比得出EF的長,進而得出△OBC∽△OEF,進而得出EO的長,即可得出答案.【詳解】解:∵正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,∴,∵BC=2,∴EF=BE=6,∵BC∥EF,∴△OBC∽△OEF,∴,解得:OB=3,∴EO=9,∴F點坐標為:(9,6),故選:B.【點睛】此題主要考查了位似變換以及相似三角形的判定與性質(zhì),正確得出OB的長是解題關(guān)鍵.9、A【分析】根據(jù)平行線分線段成比例定理列出比例式,代入計算得到答案.【詳解】解:∵=,∴,∵DE∥BC,∴,故選:A.【點睛】本題考查的是平行線分線段成比例定理,靈活運用定理、找準對應(yīng)關(guān)系是解題的關(guān)鍵.10、A【分析】根據(jù)中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,故本選項符合題意;B、不是軸對稱圖形,不是中心對稱圖形,故本選項不合題意;C、是軸對稱圖形,不是中心對稱圖形,故本選項不合題意;D、是軸對稱圖形,不是中心對稱圖形,故本選項不合題意.故答案為A.【點睛】本題考查了中心對稱圖形和軸對稱圖形的概念,理解這兩個概念是解答本題的關(guān)鍵.11、D【分析】根據(jù)在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半,即可求得答案.【詳解】∵∠BCD=30°,∴∠BOD=2∠BCD=2×30°=60°.故選:D.【點睛】本題考查了圓的角度問題,掌握圓周角定理是解題的關(guān)鍵.12、A【解析】根據(jù)已知,運用直角三角形和三角函數(shù)得到上升的高度為:8tan20°.【詳解】設(shè)木樁上升了h米,∴由已知圖形可得:tan20°=,∴木樁上升的高度h=8tan20°故選B.二、填空題(每題4分,共24分)13、8【解析】試題分析:設(shè)紅球有x個,根據(jù)概率公式可得,解得:x=8.考點:概率.14、②③④.【分析】①錯誤.根據(jù)x1<x2<0時,函數(shù)y隨x的增大而減小可得;②正確.求出A、B兩點坐標即可解決問題;③正確.設(shè)P(0,m),則B(,m),A(﹣,m),求出PA、PB,推出PA=4PB,由SAOB=S△OPB+S△OPA即可求出S△AOB=7.5;④正確.設(shè)P(0,m),則B(,m),A(﹣,m),推出PB=﹣,PA=﹣,OP=﹣m,由△OPB∽△APO,可得OP2=PB?PA,列出方程即可解決問題.【詳解】解:①錯誤.∵x1<x2<0,函數(shù)y隨x是增大而減小,∴y1>y2,故①錯誤.②正確.∵P(0,﹣3),∴B(﹣1,﹣3),A(4,﹣3),∴AB=5,OA==5,∴AB=AO,∴△AOB是等腰三角形,故②正確.③正確.設(shè)P(0,m),則B(,m),A(﹣,m),∴PB=﹣,PA=﹣,∴PA=4PB,∵SAOB=S△OPB+S△OPA=+=7.5,故③正確.④正確.設(shè)P(0,m),則B(,m),A(﹣,m),∴PB=﹣,PA=﹣,OP=﹣m,∵∠AOB=90°,∠OPB=∠OPA=90°,∴∠BOP+∠AOP=90°,∠AOP+∠OAP=90°,∴∠BOP=∠OAP,∴△OPB∽△APO,∴=,∴OP2=PB?PA,∴m2=﹣?(﹣),∴m4=36,∵m<0,∴m=﹣,∴A(2,﹣),故④正確.∴②③④正確,故答案為②③④.【點睛】本題考查反比例函數(shù)綜合題、等腰三角形的判定、兩點間距離公式、相似三角形的判定和性質(zhì)、待定系數(shù)法等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會利用參數(shù),構(gòu)建方程解決問題.15、-2<x<-1或x>1.【解析】不等式的圖象解法,平移的性質(zhì),反比例函數(shù)與一次函數(shù)的交點問題,對稱的性質(zhì).不等式k1x<+b的解集即k1x-b<的解集,根據(jù)不等式與直線和雙曲線解析式的關(guān)系,可以理解為直線y=k1x-b在雙曲線下方的自變量x的取值范圍即可.而直線y=k1x-b的圖象可以由y=k1x+b向下平移2b個單位得到,如圖所示.根據(jù)函數(shù)圖象的對稱性可得:直線y=k1x-b和y=k1x+b與雙曲線的交點坐標關(guān)于原點對稱.由關(guān)于原點對稱的坐標點性質(zhì),直線y=k1x-b圖象與雙曲線圖象交點A′、B′的橫坐標為A、B兩點橫坐標的相反數(shù),即為-1,-2.∴由圖知,當-2<x<-1或x>1時,直線y=k1x-b圖象在雙曲線圖象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.16、或【分析】先求出點A(-4,0),B(0,-3),利用勾股定理得到AB=5,過點P作PC⊥AB于點C,則PC=1,證明△PAC∽△BAO,得到,求出PA=,再分點P在點A的左側(cè)和右側(cè)兩種情況分別求出OP,即可得到點P的坐標.【詳解】令中x=0,得y=-3;令y=0,得x=-4,∴A(-4,0),B(0,-3),∴OA=4,OB=3,∴AB=5,過點P作PC⊥AB于點C,則PC=1,∴∠PCA=∠AOB=90°,∵∠PAC=∠BAO,∴△PAC∽△BAO,∴,∴,∴PA=,當點P在點A左側(cè)時,PO=PA+OA=+4=,∴點P的坐標為(-,0);當點P在點A的右側(cè)時,PO=OA-PA=4-=,∴點P的坐標為(-,0),故答案為:或.【點睛】此題考查一次函數(shù)與x軸、y軸的交點坐標,勾股定理,圓的切線的性質(zhì)定理,相似三角形的判定及性質(zhì),解題中注意運用分類討論的思想.17、<【分析】根據(jù)反比例函數(shù)圖象增減性解答即可.【詳解】∵反比例函數(shù)的圖象在每一個象限內(nèi)y隨x的增大而增大∴圖象上點與點,且0<<∴<故本題答案為:<.【點睛】本題考查了反比例函數(shù)的圖象和性質(zhì),熟練掌握反比例函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.18、.【詳解】試題分析:設(shè)方程的另一個根為m,根據(jù)根與系數(shù)的關(guān)系得到1?m=,解得m=.考點:根與系數(shù)的關(guān)系.三、解答題(共78分)19、(1);(2)或【分析】(1)根據(jù)反比例函數(shù)表達式求出點C坐標,再利用“待定系數(shù)法”求出一次函數(shù)表達式,從而求出坐標;(2)根據(jù)“P在軸上,軸交反比例函數(shù)的圖象于點”及k的幾何意義可求出△POQ的面積,從而求得△PAC的面積,利用面積求出點P坐標即可.【詳解】解:(1)∵軸于點,,∴點C的橫坐標為2,把代入反比例函數(shù),得,∴,設(shè)直線的解析式為,把,代入,得,解得,∴直線的解析式為,令,解得,∴;(2)∵軸,點在反比例函數(shù)的圖象上,∴,∵,∴,∴,∴,由(1)知,∴或.【點睛】本題考查一次函數(shù)與反比例函數(shù)的綜合應(yīng)用,要熟練掌握“待定系數(shù)法”求表達式及反比例函數(shù)中k的幾何意義,在利用面積求坐標時要注意多種情況.20、(1)拋物線的解析式為y=x1-x-1頂點D的坐標為(,-).(1)△ABC是直角三角形,理由見解析;(3).【解析】(1)把點A坐標代入拋物線即可得解析式,從而求得頂點坐標;(1)分別計算出三條邊的長度,符合勾股定理可知其是直角三角形;(3)作出點C關(guān)于x軸的對稱點C′,則C′(0,1),OC′=1,連接C′D交x軸于點M,根據(jù)軸對稱性及兩點之間線段最短可知,MC+MD的值最?。驹斀狻拷猓海?)∵點A(-1,0)在拋物線y=x1+bx-1上∴×(-1)1+b×(-1)–1=0解得b=∴拋物線的解析式為y=x1-x-1.y=x1-x-1=(x1-3x-4)=(x-)1-,∴頂點D的坐標為(,-).(1)當x=0時y=-1,∴C(0,-1),OC=1.當y=0時,x1-x-1=0,∴x1=-1,x1=4∴B(4,0)∴OA=1,OB=4,AB=5.∵AB1=15,AC1=OA1+OC1=5,BC1=OC1+OB1=10,∴AC1+BC1=AB1.∴△ABC是直角三角形.(3)作出點C關(guān)于x軸的對稱點C′,則C′(0,1),OC′=1,連接C′D交x軸于點M,根據(jù)軸對稱性及兩點之間線段最短可知,MC+MD的值最?。夥ㄒ唬涸O(shè)拋物線的對稱軸交x軸于點E.∵ED∥y軸,∴∠OC′M=∠EDM,∠C′OM=∠DEM∴△C′OM∽△DEM.∴∴,∴m=.解法二:設(shè)直線C′D的解析式為y=kx+n,則,解得n=1,.∴.∴當y=0時,,∴.21、【分析】首先過點作,然后在中,利用銳角三角函數(shù)解出,,再在中得出,進而得出AB,即可得出△ABC的面積.【詳解】過點作,垂足在中,,,∴,在中,,∴∴∴【點睛】此題主要考查利用銳角三角函數(shù)解直角三角形,熟練掌握,即可解題.22、【分析】觀察圖表可知,此二次函數(shù)以x=1為軸對稱,頂點為(1,4),判斷適合套用頂點式y(tǒng)=a(x-h)2+k,得到,再將除頂點外的任意已知點代入,如點(-1,0),得a=-1.故所求函數(shù)表達式為【詳解】解:觀察圖表可知,當x=-1時y=0,當x=3時y=0,∴對稱軸為直線,頂點坐標為,∴設(shè),∵當x=-1時y=0,∴,∴=-1,∴.【點睛】本題考查了用待定系數(shù)法求二次函數(shù)的解析式,這類問題首先應(yīng)考慮能不能用簡便方法即能不能用頂點式和交點式來解,實在不行用一般形式.此題能觀察確定出對稱軸和頂點的坐標是關(guān)鍵.23、.【分析】由已知可得,從而可知,,設(shè)AB=3x,則BE=2x,再利用勾股定理和等腰三角形性質(zhì)用x表示DE和BC,從而解答【詳解】解:∵∠BAE=∠DAE+∠BAD,∠ADE=∠B+∠BAD,又∵∠DAE=∠B=30°,∴∠BAE=∠ADE,∴,∴,,過A點作AH⊥BC,垂足為H,設(shè)AB=3x,則BE=2x,∵∠B=30°,∴,,∴,在中,,又∵,∴,∴,∵AB=AC,AH⊥BC,∴,∴,故答案為:.【點睛】本題考查了相似三角形的判定和性質(zhì)、等腰三角形的性質(zhì)以及勾股定理,利用三角形相似得到AB與BE的關(guān)系是解題的關(guān)鍵.24、(1);(2)見解析;(3)4或﹣5+或﹣3+【分析】(1)證明△ADB∽△ABC,可得,由此即可解決問題.(2)想辦法證明∠BEA=∠EFC,∠DBC=∠C即可解決問題.(3)分三種情形構(gòu)建方程組解決問題即可.【詳解】(1)∵AB=8,AC=12,又∵AB2=AD?AC∴∵AB2=AD?AC,∴,又∵∠BAC是公共角∴△ADB∽△ABC,∴∴=∴.(2)∵AC=12,,∴,∴BD=CD,∴∠DBC=∠C,∵△ADB∽△ABC∴∠ABD=∠C,∴∠ABD=∠DBC,∵∠BEF=∠C+∠EFC,即∠BEA+∠AEF=∠C+∠EFC,∵∠AEF=∠C,∴∠BEA=∠EFC,又∵∠DBC=∠C,∴△BEG∽△CFE.(3)如圖中,過點A作AH∥BC,交BD的延長線于點H,設(shè)BE=x,CF=y,∵AH∥BC,∴====,∵BD=CD=,AH=8,∴AD=DH=,∴BH=12,∵AH∥BC,∴=,∴=,∴BG=,∵∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論