第四章 多組分體系_第1頁(yè)
第四章 多組分體系_第2頁(yè)
第四章 多組分體系_第3頁(yè)
第四章 多組分體系_第4頁(yè)
第四章 多組分體系_第5頁(yè)
已閱讀5頁(yè),還剩120頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

物理化學(xué)電子教案—第四章多組分系統(tǒng)熱力學(xué)及其在溶液中的應(yīng)用純B實(shí)際曲線服從Henry定律純?nèi)軇┫∪芤喊胪改そ虒W(xué)目標(biāo)

1.了解理想的和非理想氣體化學(xué)勢(shì)的表示式;2.了解逸度的概念;3.了解偏摩爾量和化學(xué)勢(shì)的區(qū)別和在多組分系統(tǒng)中引入偏摩爾量和化學(xué)勢(shì)的意義;4.了解相對(duì)活度的概念;5.了解理想液態(tài)混合物的通性及化學(xué)勢(shì)的表示方法;6.了解理想稀溶液中各組分化學(xué)勢(shì)的表示法;7.理解多組分系統(tǒng)的組成表示法及其相互之間的關(guān)系;8.理解偏摩爾量和化學(xué)勢(shì)的定義;9.掌握理想氣體化學(xué)勢(shì)的表示式及其標(biāo)準(zhǔn)態(tài)的含義;10.掌握Roult定律和Henry定律;11.掌握稀溶液的依數(shù)性。第4章多組分系統(tǒng)熱力學(xué)4.1多組分系統(tǒng)的組成表示法4.2偏摩爾量4.3化學(xué)勢(shì)4.5氣體及其混合物中各組分的化學(xué)勢(shì)4.4稀溶液的兩個(gè)經(jīng)驗(yàn)定律

4.6液態(tài)混合物及稀溶液的化學(xué)勢(shì)4.8稀溶液的依數(shù)性4.7相對(duì)活度的概念★本章是將熱力學(xué)基本原理應(yīng)用于組成可變的多組分系統(tǒng)中,從偏摩爾數(shù)量和化學(xué)勢(shì)兩個(gè)重要的概念出發(fā),對(duì)多組分系統(tǒng)熱力學(xué)問(wèn)題進(jìn)行討論和研究.

★對(duì)于組成可變的系統(tǒng)分為兩類:其一是封閉系統(tǒng),雖系統(tǒng)與環(huán)境無(wú)物質(zhì)交換,但系統(tǒng)內(nèi)可發(fā)生化學(xué)反應(yīng)等;其二是敞開(kāi)系統(tǒng),系統(tǒng)與環(huán)境有物質(zhì)交換,當(dāng)然系統(tǒng)內(nèi)也可發(fā)生化學(xué)反應(yīng),如濃度改變的溶液和相變中某一相作為系統(tǒng)都是敞開(kāi)系統(tǒng).多組分系統(tǒng)熱力學(xué),實(shí)際上是熱力學(xué)第一、第二定律在敞開(kāi)系統(tǒng)中的推廣.4.1多組分系統(tǒng)的組成表示法1.混合物和溶液2.多組分系統(tǒng)的組成表示法多組分系統(tǒng)兩種或兩種以上的物質(zhì)(或稱為組分)所形成的系統(tǒng)稱為多組分系統(tǒng)。混合物(mixture)多組分均勻系統(tǒng)中,各組分均可選用相同的方法處理,有相同的標(biāo)準(zhǔn)態(tài),遵守相同的經(jīng)驗(yàn)定律,這種系統(tǒng)稱為混合物。多組分系統(tǒng)可以是均相的,也可以是多相的?;旌衔镉袣鈶B(tài)、液態(tài)和固態(tài)之分。4.1.1混合物和溶液溶液(Solution)如果組成溶液的物質(zhì)有不同的狀態(tài),通常將液態(tài)物質(zhì)稱為溶劑,氣態(tài)或固態(tài)物質(zhì)稱為溶質(zhì)。如果都具有相同狀態(tài),則把含量多的一種稱為溶劑,含量少的稱為溶質(zhì)。溶劑(solvent)和溶質(zhì)(solute)含有一種以上組分的液體相或固體相稱之。溶液有液態(tài)溶液和固態(tài)溶液之分,但沒(méi)有氣態(tài)溶液。溶劑和溶質(zhì)要用不同方法處理,他們的標(biāo)準(zhǔn)態(tài)、化學(xué)勢(shì)的表示式不同,服從不同的經(jīng)驗(yàn)定律。溶質(zhì)有電解質(zhì)和非電解質(zhì)之分,本章主要討論非電介質(zhì)所形成的溶液。如果在溶液中含溶質(zhì)很少,這種溶液稱為稀溶液,常用符號(hào)“∞”表示。多種氣體混合在一起,因混合非常均勻,稱為氣態(tài)混合物,而不作為氣態(tài)溶液處理。4.1.2

多組分系統(tǒng)的組成表示法在均相的混合物中,任一組分B的濃度表示法主要有如下幾種:1.B的質(zhì)量濃度 2.B的質(zhì)量分?jǐn)?shù)3.B的濃度4.B的摩爾分?jǐn)?shù)4.1.2

多組分系統(tǒng)的組成表示法即用B的質(zhì)量除以混合物的體積V,的單位是:

1.B的質(zhì)量濃度 4.1.2

多組分系統(tǒng)的組成表示法2.B的質(zhì)量分?jǐn)?shù)即B的質(zhì)量與混合物的質(zhì)量之比的單位為14.1.2

多組分系統(tǒng)的組成表示法(又稱為B的物質(zhì)的量濃度)即B的物質(zhì)的量與混合物體積V的比值但常用單位是 3.B的濃度單位是4..1.2

多組分系統(tǒng)的組成表示法即指B的物質(zhì)的量與混合物總的物質(zhì)的量之比稱為溶質(zhì)B的摩爾分?jǐn)?shù),又稱為物質(zhì)的量分?jǐn)?shù)。摩爾分?jǐn)?shù)的單位為14.B的摩爾分?jǐn)?shù)氣態(tài)混合物中摩爾分?jǐn)?shù)常用表示(1)溶質(zhì)B的質(zhì)量摩爾濃度mB溶質(zhì)B的物質(zhì)的量與溶劑A的質(zhì)量之比稱為溶質(zhì)B的質(zhì)量摩爾濃度。這個(gè)表示方法的優(yōu)點(diǎn)是可以用準(zhǔn)確的稱重法來(lái)配制溶液,不受溫度影響,電化學(xué)中用的很多在溶液中,表示溶質(zhì)濃度的方法有:質(zhì)量摩爾濃度的單位是(2)溶質(zhì)B的摩爾比rB溶質(zhì)B的物質(zhì)的量與溶劑A的物質(zhì)的量之比溶質(zhì)B的摩爾比的單位是1在溶液中,表示溶質(zhì)濃度的方法有:4.2偏摩爾量1.單組分與多組分系統(tǒng)的區(qū)別2.偏摩爾量的定義3.偏摩爾量的加和公式單組分體系的摩爾熱力學(xué)函數(shù)值

摩爾體積摩爾焓摩爾熱力學(xué)能摩爾熵摩爾Helmolz自由能摩爾Gibbs自由能這些摩爾熱力學(xué)函數(shù)值都是強(qiáng)度性質(zhì)

單組分系統(tǒng)的廣度性質(zhì)具有加和性若1mol單組分B物質(zhì)的體積為則2mol單組分B物質(zhì)的體積為而1mol單組分B物質(zhì)和1mol單組分C物質(zhì)混合,得到的混合體積可能有兩種情況:形成了混合物形成了溶液4.2.1多組分系統(tǒng)與單組分系統(tǒng)的差別多組分系統(tǒng)的熱力學(xué)特征

但對(duì)于多組分均相系統(tǒng),僅規(guī)定T和p系統(tǒng)的狀態(tài)并不能確定.下表給出100kPa、20℃時(shí)不同濃度的100g乙醇水溶液體積的實(shí)驗(yàn)結(jié)果:為此我們引入偏摩爾數(shù)量的概念.

②多組分系統(tǒng)任一容量性質(zhì):

①多組分系統(tǒng)的熱力學(xué)性質(zhì)與各種物質(zhì)的量不具有簡(jiǎn)單的加和性.

從實(shí)驗(yàn)數(shù)據(jù)看,溶液的體積并不等于各組分純態(tài)體積之和,且體積改變隨溶液濃度不同而異.雖然乙醇和水的m、T、p固定,還必須規(guī)定系統(tǒng)中每種物質(zhì)的量方可確定系統(tǒng)的狀態(tài).因而得出如下結(jié)論:z=z(T、p、n1、n2……)4.2.2偏摩爾量的定義在多組分系統(tǒng)中,每個(gè)熱力學(xué)函數(shù)的變量就不止兩個(gè),還與組成系統(tǒng)各物的物質(zhì)的量有關(guān)系統(tǒng)中任一容量性質(zhì)Z(代表V,U,H,S,A,G等)除了與溫度、壓力有關(guān)外,還與各組分的數(shù)量有關(guān),即設(shè)系統(tǒng)中有個(gè)組分如果溫度、壓力和組成有微小的變化,則系統(tǒng)中任一容量性質(zhì)Z的變化為:4.2.2偏摩爾量的定義在等溫、等壓的條件下:4.2.2偏摩爾量的定義偏摩爾量ZB的定義為:

ZB稱為物質(zhì)B的某種容量性質(zhì)Z的偏摩爾量代入下式并整理得常見(jiàn)的偏摩爾量定義式有:代表偏摩爾量代表純物的摩爾量

②指定T、p條件下,在有限量系統(tǒng)中,其它組分不變(nC不變)的條件下,加入無(wú)限小量dnB摩爾的B組分所引起系統(tǒng)容量性質(zhì)的改變.意義:①指定T、p條件下,在各組分濃度確定的大量系統(tǒng)中,加入1molB組分所引起系統(tǒng)容量性質(zhì)的改變.

核心:都是保持系統(tǒng)濃度不變.

③對(duì)單組分系統(tǒng),偏摩爾數(shù)量ZB就是摩爾數(shù)量Zm.

②ZB為強(qiáng)度性質(zhì),與系統(tǒng)總量無(wú)關(guān),取決于T、p和各組分濃度.說(shuō)明:①偏摩爾數(shù)量必須是在指定T、p下,系統(tǒng)容量性質(zhì)對(duì)物質(zhì)的量的偏導(dǎo)數(shù),其它條件就不是偏摩爾數(shù)量.④

任何偏摩爾量都是T,p和組成的函數(shù)。4.2.3偏摩爾量的加和公式按偏摩爾量定義,在保持偏摩爾量不變的情況下,對(duì)上式積分則4.2.3偏摩爾量的加和公式 這就是偏摩爾量的加和公式或稱為偏摩爾量的集合公式,說(shuō)明系統(tǒng)的總的容量性質(zhì)等于各組分偏摩爾量的加和。 例如:系統(tǒng)只有兩個(gè)組分,其物質(zhì)的量和偏摩爾體積分別為和,則系統(tǒng)的總體積為:4.2.3偏摩爾量的加和公式所以有:結(jié)論:系統(tǒng)的熱力學(xué)性質(zhì)等于各組分偏摩爾量的簡(jiǎn)單加和.Gibbs-Duhem公式——系統(tǒng)中偏摩爾量之間的關(guān)系如果在溶液中不按比例地添加各組分,則溶液濃度會(huì)發(fā)生改變,這時(shí)各組分的物質(zhì)的量和偏摩爾量均會(huì)改變。對(duì)Z進(jìn)行微分根據(jù)加和公式在等溫、等壓下某均相系統(tǒng)任一容量性質(zhì)的全微分為Gibbs-Duhem公式

這就稱為Gibbs-Duhem公式,說(shuō)明偏摩爾量之間是具有一定聯(lián)系的。某一偏摩爾量的變化可從其它偏摩爾量的變化中求得。(1),(2)兩式相比,得:如:二組分系統(tǒng)

nAdVA+nBdVB=0nAdGA+nBdGB=0

Gibbs-Duhem公式為一很重要關(guān)系.它反映了各偏摩爾量間相互聯(lián)系、相互消長(zhǎng)的制約關(guān)系,在討論溶液?jiǎn)栴}時(shí)非常重要.

下圖是在25℃、100kPa下Mg2SO4水溶液體積隨溶液組成的變化曲線.

②斜率法由實(shí)驗(yàn)測(cè)定指定T、p下,在定量溶劑A中加入不同物質(zhì)的量的溶質(zhì)B所得系統(tǒng)性質(zhì)的系列數(shù)據(jù),繪出曲線,然后由曲線某點(diǎn)的斜率求得;

①解析法將實(shí)驗(yàn)測(cè)得函數(shù)關(guān)系式z=f(mB)直接微分求的.偏摩爾量的求算

由曲線的斜率可求得mB=0.2mol·kg-1溶液中,Mg2SO4的偏摩爾體積VBm.

溶劑A的偏摩爾體積為:③截距法4.3化學(xué)勢(shì)4.3.2化學(xué)勢(shì)的定義在多組分系統(tǒng)中,每個(gè)熱力學(xué)函數(shù)的變量就不止兩個(gè),還與組成系統(tǒng)各物的物質(zhì)的量有關(guān),所以要在基本公式中增加組成這個(gè)變量

(1)熱力學(xué)能設(shè)系統(tǒng)中有個(gè)組分所含的量分別為化學(xué)勢(shì)的定義其全微分為定義化學(xué)勢(shì)第一個(gè)基本公式就可表示為:化學(xué)勢(shì)的定義同理,相應(yīng)的化學(xué)勢(shì)定義式為:多組分系統(tǒng)的熱力學(xué)基本公式應(yīng)表示為:化學(xué)勢(shì)的定義:

保持熱力學(xué)函數(shù)的特征變量和除B以外其它組分不變,某熱力學(xué)函數(shù)隨物質(zhì)的量的變化率稱為化學(xué)勢(shì)。化學(xué)勢(shì)的廣義定義式狹義定義式通常實(shí)驗(yàn)都是在等溫、等壓下進(jìn)行,所以如不特別指明,化學(xué)勢(shì)就是指偏摩爾Gibbs自由能。μB是決定物質(zhì)傳遞方向的一個(gè)物理量.已知化學(xué)勢(shì)的物理意義

可見(jiàn),正是系統(tǒng)做非體積功的那一部分能量(是由物質(zhì)交換引起的),稱為化學(xué)功(μB廣義力,dnB廣義位移),可見(jiàn)比較二式恒溫、恒壓下得:化學(xué)勢(shì)在判斷相變和化學(xué)變化的方向和限度方面有重要作用。(4)化學(xué)勢(shì)總是對(duì)某物質(zhì)某相而言,絕對(duì)沒(méi)有所謂體系的化學(xué)勢(shì)。

(1)化學(xué)勢(shì)的物理意義:保持特征變量和除B以外其它組分不變,某熱力學(xué)函數(shù)隨其物質(zhì)的量nB的變化率。

注意:

(3)化學(xué)勢(shì)是狀態(tài)函數(shù),強(qiáng)度量,其絕對(duì)值不能確定,單位為J·mol-1。

(2)不管采用哪一種表達(dá)式,其化學(xué)勢(shì)的值是唯一的。

(5)偏摩爾量與化學(xué)勢(shì)之間的區(qū)別①化學(xué)勢(shì)有四個(gè)等價(jià)的定義,化學(xué)勢(shì)與偏摩爾量只有Z為G是表達(dá)式一致。即偏摩爾吉布斯自由能又是化學(xué)勢(shì)。②化學(xué)勢(shì)與偏摩爾量不同還有:凡是廣度量Z均有偏摩爾量ZB,n(如V、Cp),而化學(xué)勢(shì)僅有U、H、F、G四個(gè)定義式?;瘜W(xué)勢(shì)判據(jù)(1)過(guò)程性質(zhì)的判據(jù)恒溫、恒壓下:式中,“>”代表不可逆過(guò)程,“=”代表可逆過(guò)程.(2)自發(fā)變化方向和限度的判據(jù)恒溫、恒壓下無(wú)非體積功時(shí):(平衡標(biāo)志之一)(3)相平衡判據(jù)

設(shè)系統(tǒng)由α相和β相組成,兩相均含多個(gè)物質(zhì)組分.恒溫恒壓下,設(shè)有dnB的B組分自α相轉(zhuǎn)移到β相,系統(tǒng)Gibbs函數(shù)相應(yīng)微小變化為:而α相所失等于β相所得,即:所以若上述轉(zhuǎn)移是在平衡條件下進(jìn)行的,即:

表示在恒溫恒壓下組分B將自動(dòng)從高化學(xué)勢(shì)相轉(zhuǎn)移到低化學(xué)勢(shì)相,直到組分B在兩相的化學(xué)勢(shì)相等達(dá)平衡為止.若上述轉(zhuǎn)移是自發(fā)進(jìn)行的,有

表示組分B在α相和β相中分配達(dá)平衡的條件是在兩相的化學(xué)勢(shì)相等.所以(4)化學(xué)反應(yīng)方向判據(jù)設(shè)有反應(yīng)反應(yīng)Gibbs函數(shù)變化為若反應(yīng)在平衡條件下進(jìn)行的,則若反應(yīng)是自發(fā)進(jìn)行的,則一般地,對(duì)任一化學(xué)反應(yīng)則有4.3.3化學(xué)勢(shì)與壓力的關(guān)系對(duì)于純組分系統(tǒng),根據(jù)基本公式,有:對(duì)多組分系統(tǒng),把換為,則摩爾體積變?yōu)槠栿w積。4.3.3化學(xué)勢(shì)與溫度的關(guān)系根據(jù)純組分的基本公式, 將代替,則得到的摩爾熵?fù)Q為偏摩爾熵?;瘜W(xué)勢(shì)與溫度的關(guān)系上式即等于根據(jù)Gibbs自由能的定義式在等溫、等壓條件下,各項(xiàng)對(duì)微分,得同理可證4.4稀溶液的兩個(gè)經(jīng)驗(yàn)定律1.Raoult定律2.Henry定律4.4稀溶液中的兩個(gè)經(jīng)驗(yàn)定律一、Raoult定律(Raoult’sLaw)1887年,法國(guó)化學(xué)家Raoult通過(guò)實(shí)驗(yàn)發(fā)現(xiàn),溶劑中加入不揮發(fā)性溶質(zhì),溶劑的蒸氣壓降低,即用公式表示為:“定溫下,在稀溶液中,溶劑的蒸氣壓等于純?nèi)軇┱魵鈮撼艘匀芤褐腥軇┑哪柗謹(jǐn)?shù)”—純?nèi)軇┑娘柡驼魵鈮喝绻芤褐兄挥蠥,B兩個(gè)組分,

Raoult定律也可表示為:溶劑蒸氣壓的降低值與純?nèi)軇┱魵鈮褐鹊扔谌苜|(zhì)的摩爾分?jǐn)?shù)。

②使用Raoult定律時(shí),溶液中溶質(zhì)的摩爾質(zhì)量應(yīng)按氣態(tài)時(shí)的摩爾質(zhì)量計(jì)算不管其在液相時(shí)是否締合。——適用與非電解質(zhì).

①拉烏爾定律適用于非電解質(zhì)稀溶液,是對(duì)溶劑而言的;以后推廣到雙液系中(但溶液必須是理想的)注意:

稀溶液的各種依數(shù)性都可用Raoult定律來(lái)解釋

③對(duì)于雙液體系

1803年,英國(guó)化學(xué)家Henry根據(jù)實(shí)驗(yàn)總結(jié)出另一條經(jīng)驗(yàn)定律:“在一定溫度和平衡狀態(tài)下,氣體在液體里的溶解度(用物質(zhì)的量分?jǐn)?shù)x表示)與該氣體的平衡分壓p成正比”。用公式表示為:或二、Henry定律(Henry’sLaw)式中稱為Henry定律常數(shù),其數(shù)值與溫度、壓力、溶劑和溶質(zhì)的性質(zhì)有關(guān)。對(duì)于稀溶液,上式可簡(jiǎn)化為同理可得都稱為Henry系數(shù)顯然三個(gè)Henry系數(shù)的數(shù)值和單位都不同,其數(shù)值取決于溫度、壓力、溶質(zhì)和溶劑的性質(zhì).三者的關(guān)系為:稀溶液中:使用Henry定律應(yīng)注意:(3)溶液濃度愈稀,對(duì)Henry定律符合得愈好。對(duì)氣體溶質(zhì),升高溫度或降低壓力,降低了溶解度,能更好服從Henry定律。(1)式中

為該氣體的分壓。對(duì)于混合氣體,在總壓不大時(shí),Henry定律分別適用于每一種氣體。(2)溶質(zhì)在氣相和在溶液中的分子狀態(tài)必須相同。如,在氣相為分子,在液相為和,則Henry定律不適用。拉烏爾定律和亨利定律有哪些異同點(diǎn)

相同點(diǎn):它們都是反映了在稀溶液中某一種物質(zhì)的濃度與其達(dá)到平衡的蒸氣分壓成正比的關(guān)系。不相同點(diǎn):(1)對(duì)象不同。拉烏爾定律討論的對(duì)象是溶劑,所描述的是稀溶液中溶劑的性質(zhì);亨利定律討論的對(duì)象是溶質(zhì),所描述的是稀溶液中溶質(zhì)的性質(zhì).(2)比例常數(shù)不同。在拉烏爾定律中,PA*為A的飽和蒸氣壓,在一定溫度、壓力下,只有A的本性有關(guān)。而亨利定律中,Kx,Km,Kc是實(shí)驗(yàn)常數(shù),在一定溫度下,除了與B的性質(zhì)有關(guān)外,還與A的性質(zhì)有關(guān)。即:當(dāng)A為純?nèi)軇r(shí),XA→1,PA=PA*。而XB→1,PB=K≠PB*。(3)對(duì)于稀溶液,溶劑遵守拉烏爾定律,溶質(zhì)遵守亨利定律。對(duì)于理想溶液,拉烏爾定律和亨利定律是一致的,沒(méi)有區(qū)別。證明后講

4.5氣體及其混合物中各組分的化學(xué)勢(shì)1.單種理想氣體的化學(xué)勢(shì)2.混合理想氣體的化學(xué)勢(shì)3.非理想氣體的化學(xué)勢(shì)理想氣體其數(shù)學(xué)模型為:

(1) 所有物種分子之間均沒(méi)有作用力;(2) 所有分子的體積均可視為零。理想氣體混合物

由以上模型可以推出理想氣體混合物也服從理想氣體狀態(tài)方程式。(3) 理想氣體混合熱效應(yīng)為零因?yàn)槔硐霘怏w混合物中所有分子之間均沒(méi)有作用力,在等溫等壓條件下混合時(shí),體系的溫度不變,故體系的內(nèi)能和焓均不變,所以在混合時(shí)沒(méi)有熱效應(yīng)。一、理想氣體及其混合物的化學(xué)勢(shì)1、只有一種理想氣體,這是單個(gè)理想氣體化學(xué)勢(shì)的表達(dá)式是溫度為T,壓力為標(biāo)準(zhǔn)壓力時(shí)理想氣體的化學(xué)勢(shì),僅是溫度的函數(shù)?;瘜W(xué)勢(shì)是T,p的函數(shù) 這個(gè)狀態(tài)就是氣體的標(biāo)準(zhǔn)態(tài)混合理想氣體各組分遵守道爾頓分壓定律:即pB=pxB,則2.混合理想氣體各組分的化學(xué)勢(shì)即其中:

為純理想氣體B在指定T、p時(shí)的化學(xué)勢(shì),這個(gè)狀態(tài)顯然不是標(biāo)準(zhǔn)態(tài).標(biāo)準(zhǔn)態(tài)為指定溫度T、pθ下純B的狀態(tài).對(duì)于理想氣體混合物,根據(jù)Dalton定律:代入上式,得這就是理想氣體混合物中氣體B的化學(xué)勢(shì)表示式這個(gè)式子也可看作理想氣體混合物的定義。 是純氣體B在指定T,p時(shí)的化學(xué)勢(shì),顯然這不是標(biāo)準(zhǔn)態(tài)。二、非理想氣體混合物的化學(xué)勢(shì)——逸度的概念

設(shè)非理想氣體的狀態(tài)方程可用卡末林—昂尼斯(Kamerling-Onnes)公式表示,代入上式,作不定積分式中為積分常數(shù),可從邊界條件求得1.純實(shí)際氣體(A)當(dāng) 時(shí),即為理想氣體比較(A),(B)兩式,得積分常數(shù):當(dāng)p很小時(shí),將代入非理想氣體化學(xué)勢(shì)表示式,得:等式右邊第一項(xiàng)是氣體標(biāo)準(zhǔn)態(tài)時(shí)的化學(xué)勢(shì),它僅是溫度的函數(shù),壓力為標(biāo)準(zhǔn)壓力。等式右邊第二項(xiàng)之后的其他項(xiàng),都是非理想氣體才有的項(xiàng),它表示了與理想氣體的偏差。為了使化學(xué)勢(shì)有更簡(jiǎn)潔的形式,把所有校正項(xiàng)集中成一個(gè)校正項(xiàng),于是引入逸度的概念。令則f

稱為逸度(fugacity),可看作是有效壓力。

稱為逸度因子(fugacityfactor)或逸度系數(shù)(fugacitycoefficient)。(校正系數(shù)).顯然,實(shí)際氣體的狀態(tài)方程不同,逸度因子也不同這就是理想氣體當(dāng)p→0時(shí),即f=p.

關(guān)于標(biāo)準(zhǔn)態(tài):為指定溫度T、標(biāo)準(zhǔn)壓力pθ下實(shí)際氣體具有理想氣體行為(f=pθ,γ=1)的標(biāo)準(zhǔn)態(tài)化學(xué)勢(shì).顯然為實(shí)際氣體的假想態(tài)(見(jiàn)圖)這不影響△μ的計(jì)算:

對(duì)不同的實(shí)際氣體1和2,f=fθ的真實(shí)狀態(tài)R1、R2是不同的,但標(biāo)準(zhǔn)態(tài)S是相同的,并且為一假想態(tài).

由圖可見(jiàn),標(biāo)準(zhǔn)態(tài)S就是TK、壓力為pθ理想氣體的真實(shí)狀態(tài).2.實(shí)際混合氣體混合氣體組分B的化學(xué)勢(shì)為:其中:fB=γBpBpB是混合氣體組分B的分壓;γB≠γB*(純組分B的逸度因子)可以由前述方法來(lái)求.Lewis-Randoll(路易斯-蘭道爾)規(guī)則:

其中:為同溫下純組分B其壓力等于混合氣體總壓時(shí)的逸度,即fB的求法:一、理想液態(tài)混合物定義不分溶劑和溶質(zhì),任一組分在全部濃度范圍內(nèi)(xB=0~1)都符合Raoult定律的溶液稱為理想液態(tài)混合物。符合或者接近此要求的溶液有:同位素分子混合物(H2O—D2O)立體異構(gòu)體混合物(HOOC-CH=CH-COOH順式、反式)光學(xué)異構(gòu)體混合物(d-樟腦,l-樟腦)緊鄰?fù)滴锘旌衔?苯—甲苯)

理想液體混合物是科學(xué)上的一個(gè)抽象,有一定的理論價(jià)值和實(shí)際意義.4.6

理想液態(tài)混合物

從分子模型上看,各組分分子大小和作用力彼此相似,在混合時(shí)沒(méi)有熱效應(yīng)和體積變化,即設(shè)溫度T時(shí):1、純液態(tài)B的化學(xué)勢(shì)二、理想液體混合物各組分的化學(xué)勢(shì)2、混合液態(tài)B的化學(xué)勢(shì)在溫度T時(shí),某溶液與其蒸氣呈平衡時(shí):

若溶液中組分B服從Raoult定律,即則:

其中為指定T、p下純B的化學(xué)勢(shì).但不是標(biāo)準(zhǔn)態(tài),因通常我們所選取的標(biāo)準(zhǔn)態(tài)的壓力為100kPa,但壓力改變時(shí),化學(xué)勢(shì)也隨著改變.積分:已知:故上式可簡(jiǎn)寫為:

通常情況下,p與pθ偏離不大,且溶液的體積受壓力影響很小,認(rèn)為代入上式得:這就是理想液態(tài)混合物中任一組分化學(xué)勢(shì)表示式任一組分的化學(xué)勢(shì)可以用該式表示的則稱為理想液態(tài)混合物。3、理想液態(tài)混合物的通性理想液態(tài)混合物的通性將化學(xué)勢(shì)表示式除以T,得根據(jù)Gibbs-Helmholtz公式,得對(duì)T微分,得理想液態(tài)混合物的通性理想液態(tài)混合物的通性將化學(xué)勢(shì)表示式對(duì)T微分,得理想液態(tài)混合物的通性已知對(duì)于非理想液態(tài)混合物,混合過(guò)程的熱力學(xué)函數(shù)的變化值與理想的會(huì)發(fā)生偏離,見(jiàn)下圖理想液態(tài)混合物的通性理想液態(tài)混合物的通性(5)Raoult定律與Henry定律沒(méi)有區(qū)別令:理想液體混合物的通性①混合體積②混合焓⑤理想液體混合物拉烏爾定律與亨利定律沒(méi)有區(qū)分。④混合Gibbs自由能③混合熵三、理想稀溶液中任一組分的化學(xué)勢(shì) 有兩個(gè)組分組成一溶液,在一定的溫度和壓力下,在一定的濃度范圍內(nèi),溶劑遵守Raoult定律,溶質(zhì)遵守Henry定律,這種溶液稱為理想稀溶液。理想稀溶液的定義 值得注意的是,化學(xué)熱力學(xué)中的稀溶液并不僅僅是指濃度很小的溶液。一、溶劑的化學(xué)勢(shì) 溶劑服從Raoult定律, 是在該溫度下純?nèi)軇┑娘柡驼魵鈮骸?的物理意義是:等溫、等壓時(shí),純?nèi)軇?的化學(xué)勢(shì),它不是標(biāo)準(zhǔn)態(tài)。二、溶質(zhì)的化學(xué)勢(shì)Henry定律因濃度表示方法不同,有如下三種形式:(1)濃度用摩爾分?jǐn)?shù)表示 是 時(shí)又服從Henry定律那個(gè)假想態(tài)的化學(xué)勢(shì)溶質(zhì)的標(biāo)準(zhǔn)態(tài)純B溶液中溶質(zhì)的標(biāo)準(zhǔn)態(tài)(濃度為摩爾分?jǐn)?shù))實(shí)際曲線服從Henry定律溶質(zhì)的化學(xué)勢(shì)溶質(zhì)的化學(xué)勢(shì)圖中的R點(diǎn)實(shí)際不存在,因那時(shí)Henry定律不適用溶質(zhì)的參考態(tài)純B實(shí)際曲線服從亨利定律利用這個(gè)標(biāo)準(zhǔn)態(tài),在求或時(shí),可以消去,不影響計(jì)算。W點(diǎn)是 時(shí)的蒸氣壓溶質(zhì)實(shí)際的蒸氣壓曲線如實(shí)線所示溶質(zhì)的化學(xué)勢(shì)(2)濃度用質(zhì)量摩爾濃度表示 是 時(shí),又服從Henry定律那個(gè)假想態(tài)的化學(xué)勢(shì)。溶質(zhì)的化學(xué)勢(shì)溶液中溶質(zhì)的標(biāo)準(zhǔn)態(tài)(濃度為質(zhì)量摩爾濃度)實(shí)際曲線1.0溶質(zhì)標(biāo)準(zhǔn)態(tài)溶質(zhì)的化學(xué)勢(shì)(3)濃度用物質(zhì)的量濃度表示 是 時(shí),又服從Henry定律那個(gè)假想態(tài)的化學(xué)勢(shì)。溶質(zhì)的化學(xué)勢(shì)溶液中溶質(zhì)的標(biāo)準(zhǔn)態(tài)(濃度為物質(zhì)的量濃度)實(shí)際曲線1.0溶質(zhì)標(biāo)準(zhǔn)態(tài)4.7相對(duì)活度的概念1.非理想液態(tài)混合物2.非理想稀溶液中溶劑的活度3.非理想稀溶液中溶質(zhì)的活度4.7.1非理想液態(tài)混合物什么是非理想液態(tài)混合物?由于組成混合物的各組分性質(zhì)差異較大,使其中任一組分在整個(gè)濃度范圍內(nèi)對(duì)Raoult定律發(fā)生偏差,這種偏差可以是正的,也可以是負(fù)的。由于發(fā)生了偏差,溶劑或溶質(zhì)的實(shí)測(cè)蒸氣壓與計(jì)算值不符,這同樣影響了化學(xué)勢(shì)的值。因而Lewis引進(jìn)了相對(duì)活度的概念,以后簡(jiǎn)稱為活度。4.7.1非理想液態(tài)混合物對(duì)于理想的液態(tài)混合物,在忽略壓力對(duì)液體體積影響的情況下,得到了理想液態(tài)混合物中任一組分B的化學(xué)勢(shì)的表達(dá)式為式中由于液態(tài)混合物是非理想的,任一組分的實(shí)際蒸氣壓與用Raoult定律計(jì)算的結(jié)果發(fā)生偏差,需要在濃度項(xiàng)上乘以一個(gè)校正因子4.7.1非理想液態(tài)混合物就稱為組成用摩爾分?jǐn)?shù)表示的活度定義:它是量綱一的量,是系統(tǒng)的強(qiáng)度性質(zhì)其數(shù)值與系統(tǒng)所處的狀態(tài)和標(biāo)準(zhǔn)態(tài)的選擇有關(guān),是溫度、壓力和組成的函數(shù)稱為活度因子,也是量綱一的量表示與理想狀態(tài)的偏差,是對(duì)非理想性的一種度量4.7.1非理想液態(tài)混合物對(duì)Raoult定律發(fā)生正偏差對(duì)Raoult定律發(fā)生負(fù)偏差非理想液態(tài)混合物中任一組分的化學(xué)勢(shì)表示式為4.7.2非理想稀溶液中溶劑的活度什么是非理想稀溶液?溶劑對(duì)Raoult定律發(fā)生偏差,溶質(zhì)對(duì)Henry定律發(fā)生偏差,這種偏差可正可負(fù)。這種稀溶液偏離了理想狀態(tài),稱為非理想稀溶液。由于溶劑或溶質(zhì)的蒸氣壓產(chǎn)生了偏差,勢(shì)必會(huì)影響它們相應(yīng)化學(xué)勢(shì)的表示式。為了保持與理想稀溶液相同的化學(xué)勢(shì)表示形式,Lewis引進(jìn)了相對(duì)活度的概念。4.7.2非理想稀溶液中溶劑的活度在理想稀溶液中,Raoult定律為對(duì)于非理想稀溶液修正為則非理想稀溶液中溶劑化學(xué)勢(shì)的表示式為由于稀溶液中溶劑的摩爾分?jǐn)?shù)很大,很難用活度因子明顯表示出溶劑的非理想性。4.7.3非理想稀溶液中溶質(zhì)的活度在理想稀溶液中,Henry定律為對(duì)于非理想稀溶液,Henry定律修正為令則非理想稀溶液中,溶質(zhì)的化學(xué)勢(shì)表示式為當(dāng)溶液很稀4.7.3非理想稀溶液中溶質(zhì)的活度同理,當(dāng)用不同濃度表示時(shí)對(duì)于非理想稀溶液令對(duì)應(yīng)化學(xué)勢(shì)的表示式為4.7.3非理想稀溶液中溶質(zhì)的活度因?yàn)樗缘苜|(zhì)的化學(xué)勢(shì)只有一個(gè)數(shù)值,即4.8稀溶液的依數(shù)性1.溶劑蒸氣壓降低2.凝固點(diǎn)降低3.沸點(diǎn)升高4.滲透壓§4.8

稀溶液的依數(shù)性依數(shù)性質(zhì)(colligativeproperties):依數(shù)性的表現(xiàn):1.凝固點(diǎn)降低2.沸點(diǎn)升高3.滲透壓溶質(zhì)的粒子可以是分子、離子、大分子或膠粒,這里只討論粒子是分子的情況指定溶劑的類型和數(shù)量后,這些性質(zhì)只取決于所含溶質(zhì)粒子的數(shù)目,而與溶質(zhì)的本性無(wú)關(guān)?!?.8

稀溶液的依數(shù)性出現(xiàn)依數(shù)性的根源是:由于非揮發(fā)性溶質(zhì)的加入,使溶劑的蒸氣壓降低根據(jù)Raoult定律設(shè)只有一種非揮發(fā)溶質(zhì)則溶劑蒸氣壓下降的數(shù)值與溶質(zhì)的摩爾分?jǐn)?shù)成正比,而與溶質(zhì)的性質(zhì)無(wú)關(guān)1.凝固點(diǎn)降低

什么是凝固點(diǎn)?在大氣壓力下,純物固態(tài)和液態(tài)的蒸氣壓相等,固-液兩相平衡共存時(shí)的溫度。稀溶液的凝固點(diǎn)是指,溶劑和溶質(zhì)不形成固溶體,純?nèi)軇┕?液兩相平衡共存的溫度。純?nèi)軇┖拖∪芤褐腥軇┑恼魵鈮喝缦聢D所示1.凝固點(diǎn)降低溶劑凝固點(diǎn)下降示意圖定外壓1.凝固點(diǎn)降低設(shè)在一定壓力下,溶液中溶劑的凝固點(diǎn)為固-液兩相平衡共存時(shí)有在溫度為時(shí)有對(duì)于稀溶液又已知得因?yàn)閷?duì)于稀溶液,設(shè)代入上式,得對(duì)上式

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論