2022年湖南省株洲市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022年湖南省株洲市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022年湖南省株洲市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022年湖南省株洲市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022年湖南省株洲市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年湖南省株洲市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.

若y1·y2為二階線性常系數(shù)微分方程y〞+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.為所給方程的解,但不是通解

B.為所給方程的解,但不一定是通解

C.為所給方程的通解

D.不為所給方程的解

3.A.A.3yx3y-1

B.yx3y-1

C.x3ylnx

D.3x3ylnx

4.設(shè)z=ln(x2+y),則等于()。A.

B.

C.

D.

5.

設(shè)f(x)=1+x,則f(x)等于()。A.1

B.

C.

D.

6.設(shè)y=2x3,則dy=()

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

7.

8.

9.∫-11(3x2+sin5x)dx=()。A.-2B.-1C.1D.2

10.微分方程y''-7y'+12y=0的通解為()A.y=C1e3x+C2e-4x

B.y=C1e-3x+C2e4x

C.y=C1e3x+C2e4x

D.y=C1e-3x+C2e-4x

11.

12.

13.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.

B.

C.

D.

14.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

15.A.0B.2C.2f(-1)D.2f(1)

16.

17.()。A.e-6

B.e-2

C.e3

D.e6

18.

19.

20.()A.A.1/2B.1C.2D.e二、填空題(20題)21.

22.

23.y"+8y=0的特征方程是________。

24.

25.微分方程y'=2的通解為__________。

26.設(shè)z=x3y2,則

27.

28.

29.

30.

31.32.33.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為.34.設(shè)y=ln(x+2),貝y"=________。35.

36.

37.

38.

39.40.三、計(jì)算題(20題)41.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

43.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

44.

45.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.46.47.證明:48.求微分方程的通解.49.

50.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則51.

52.

53.

54.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

55.56.將f(x)=e-2X展開為x的冪級(jí)數(shù).57.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).58.求曲線在點(diǎn)(1,3)處的切線方程.59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

60.求微分方程y"-4y'+4y=e-2x的通解.

四、解答題(10題)61.

62.設(shè)z=z(x,y)由x2+y3+2z=1確定,求63.

64.

65.

66.

67.68.

69.

70.

五、高等數(shù)學(xué)(0題)71.若f(x一1)=x2+3x+5,則f(x+1)=________。

六、解答題(0題)72.

參考答案

1.C解析:

2.B

3.D

4.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。

5.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)??芍獞?yīng)選C。

6.B

7.B

8.A

9.D

10.C因方程:y''-7y'+12y=0的特征方程為r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解為:y=C1e3x+C2e4x

11.C

12.C解析:

13.C

14.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

15.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。

16.C

17.A

18.D

19.D

20.C

21.

本題考查的知識(shí)點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.

本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.

本題中常見的錯(cuò)誤有

這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為-個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即

請(qǐng)考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.

22.

解析:

23.r2+8r=0本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性微分方程特征方程的概念。y"+8y"=0的特征方程為r2+8r=0。

24.

25.y=2x+C26.12dx+4dy;本題考查的知識(shí)點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.

由于z=x3y2可知,均為連續(xù)函數(shù),因此

27.eyey

解析:

28.

29.22解析:

30.y=0

31.2

32.33.y=f(1).

本題考查的知識(shí)點(diǎn)有兩個(gè):-是導(dǎo)數(shù)的幾何意義,二是求切線方程.

設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過該點(diǎn)的切線方程為

y-f(x0)=f(x0)(x-x0).

由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f(x0)=0,故所求切線方程為

y—f(1)=0.

本題中考生最常見的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫為

y-f(x0)=f(x)(x-x0)

而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫為

y-f(1)=f(x)(x-1).

本例中由于f(x)為抽象函數(shù),-些考生不習(xí)慣于寫f(1),有些人誤寫切線方程為

y-1=0.

34.35.本題考查的知識(shí)點(diǎn)為:求解可分離變量的微分方程.

36.3x2+4y3x2+4y解析:

37.

38.[-11)39.本題考查的知識(shí)點(diǎn)為不定積分的換元積分法。40.2本題考查的知識(shí)點(diǎn)為二重積分的幾何意義.

由二重積分的幾何意義可知,所給二重積分的值等于長(zhǎng)為1,寬為2的矩形的面積值,故為2.或由二重積分計(jì)算可知

41.

42.函數(shù)的定義域?yàn)?/p>

注意

43.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

44.

45.

46.

47.

48.

49.

50.由等價(jià)無窮小量的定義可知51.由一階線性微分方程通解公式有

52.

53.

54.

55.

56.

57.

列表:

說明

58.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

59.由二重積分物理意義知

60.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

61.解

62.本題考查的知識(shí)點(diǎn)為求二元隱函數(shù)的偏導(dǎo)數(shù).

若z=z(x,y)由方程F(x,y,z)=0確定,求z對(duì)x,y的偏導(dǎo)數(shù)通常有兩種方法:

一是利用偏導(dǎo)數(shù)公式,當(dāng)需注意F'x,F(xiàn)'yF'z分別表示F(x,y,z)對(duì)x,y,z的偏導(dǎo)數(shù).上面式F(z,y,z)中將z,y,z三者同等對(duì)待,各看做是獨(dú)立變?cè)?/p>

二是將F(x,y,z)=0兩端關(guān)于x求偏導(dǎo)數(shù),將z=z(x,y)看作為中間變量,可以解出同理將F(x,y,z)=0兩端關(guān)于y求偏導(dǎo)數(shù),將z=z(x,y)看作中間變量,可以解出

63.

64.

65.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論