版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則()A. B. C. D.2.已知函數(shù),則()A.2 B.3 C.4 D.53.集合的子集的個數(shù)是()A.2 B.3 C.4 D.84.若的展開式中的系數(shù)為-45,則實數(shù)的值為()A. B.2 C. D.5.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.6.若的展開式中含有常數(shù)項,且的最小值為,則()A. B. C. D.7.設(shè)雙曲線的左右焦點(diǎn)分別為,點(diǎn).已知動點(diǎn)在雙曲線的右支上,且點(diǎn)不共線.若的周長的最小值為,則雙曲線的離心率的取值范圍是()A. B. C. D.8.復(fù)數(shù)的共軛復(fù)數(shù)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知函數(shù),,若,對任意恒有,在區(qū)間上有且只有一個使,則的最大值為()A. B. C. D.10.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.11.中國古代數(shù)學(xué)著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.12.射線測厚技術(shù)原理公式為,其中分別為射線穿過被測物前后的強(qiáng)度,是自然對數(shù)的底數(shù),為被測物厚度,為被測物的密度,是被測物對射線的吸收系數(shù).工業(yè)上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數(shù)為()(注:半價層厚度是指將已知射線強(qiáng)度減弱為一半的某種物質(zhì)厚度,,結(jié)果精確到0.001)A.0.110 B.0.112 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某外商計劃在個候選城市中投資個不同的項目,且在同一個城市投資的項目不超過個,則該外商不同的投資方案有____種.14.根據(jù)記載,最早發(fā)現(xiàn)勾股定理的人應(yīng)是我國西周時期的數(shù)學(xué)家商高,商高曾經(jīng)和周公討論過“勾3股4弦5”的問題.現(xiàn)有滿足“勾3股4弦5”,其中“股”,為“弦”上一點(diǎn)(不含端點(diǎn)),且滿足勾股定理,則______.15.若方程有兩個不等實根,則實數(shù)的取值范圍是_____________.16.在平面直角坐標(biāo)系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形中,,,,沿對角線將翻折成,使得.(1)證明:;(2)求直線與平面所成角的正弦值.18.(12分)已知函數(shù).(1)若,求證:.(2)討論函數(shù)的極值;(3)是否存在實數(shù),使得不等式在上恒成立?若存在,求出的最小值;若不存在,請說明理由.19.(12分)△ABC的內(nèi)角的對邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長.20.(12分)在中,角,,的對邊分別為,,,,,且的面積為.(1)求;(2)求的周長.21.(12分)如圖在四邊形中,,,為中點(diǎn),.(1)求;(2)若,求面積的最大值.22.(10分)已知函數(shù).(1)當(dāng)時,試求曲線在點(diǎn)處的切線;(2)試討論函數(shù)的單調(diào)區(qū)間.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點(diǎn)睛】本題考查了集合的交集,意在考查學(xué)生的計算能力.2、A【解析】
根據(jù)分段函數(shù)直接計算得到答案.【詳解】因為所以.故選:.【點(diǎn)睛】本題考查了分段函數(shù)計算,意在考查學(xué)生的計算能力.3、D【解析】
先確定集合中元素的個數(shù),再得子集個數(shù).【詳解】由題意,有三個元素,其子集有8個.故選:D.【點(diǎn)睛】本題考查子集的個數(shù)問題,含有個元素的集合其子集有個,其中真子集有個.4、D【解析】
將多項式的乘法式展開,結(jié)合二項式定理展開式通項,即可求得的值.【詳解】∵所以展開式中的系數(shù)為,∴解得.故選:D.【點(diǎn)睛】本題考查了二項式定理展開式通項的簡單應(yīng)用,指定項系數(shù)的求法,屬于基礎(chǔ)題.5、C【解析】
由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因為且三棱柱為直三棱柱,∴∴面,∴,又,,∴,∴,解得.故選C【點(diǎn)睛】考查直三棱柱的定義,線面垂直的性質(zhì),考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題.6、C【解析】展開式的通項為,因為展開式中含有常數(shù)項,所以,即為整數(shù),故n的最小值為1.所以.故選C點(diǎn)睛:求二項展開式有關(guān)問題的常見類型及解題策略(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點(diǎn)求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).7、A【解析】
依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),屬于中檔題.8、A【解析】
試題分析:由題意可得:.共軛復(fù)數(shù)為,故選A.考點(diǎn):1.復(fù)數(shù)的除法運(yùn)算;2.以及復(fù)平面上的點(diǎn)與復(fù)數(shù)的關(guān)系9、C【解析】
根據(jù)的零點(diǎn)和最值點(diǎn)列方程組,求得的表達(dá)式(用表示),根據(jù)在上有且只有一個最大值,求得的取值范圍,求得對應(yīng)的取值范圍,由為整數(shù)對的取值進(jìn)行驗證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個最大值,所以,得,即,所以,又,因此.①當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)或時,都成立,舍去;②當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)或時,都成立,舍去;③當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)時,成立;綜上所得的最大值為.故選:C【點(diǎn)睛】本小題主要考查三角函數(shù)的零點(diǎn)和最值,考查三角函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.10、A【解析】
依據(jù)無窮等比數(shù)列求和公式,先求出首項,再求出,利用無窮等比數(shù)列求和公式即可求出結(jié)果?!驹斀狻恳驗闊o窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A。【點(diǎn)睛】本題主要考查無窮等比數(shù)列求和公式的應(yīng)用。11、C【解析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.12、C【解析】
根據(jù)題意知,,代入公式,求出即可.【詳解】由題意可得,因為,所以,即.所以這種射線的吸收系數(shù)為.故選:C【點(diǎn)睛】本題主要考查知識的遷移能力,把數(shù)學(xué)知識與物理知識相融合;重點(diǎn)考查指數(shù)型函數(shù),利用指數(shù)的相關(guān)性質(zhì)來研究指數(shù)型函數(shù)的性質(zhì),以及解指數(shù)型方程;屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、60【解析】試題分析:每個城市投資1個項目有種,有一個城市投資2個有種,投資方案共種.考點(diǎn):排列組合.14、【解析】
先由等面積法求得,利用向量幾何意義求解即可.【詳解】由等面積法可得,依題意可得,,所以.故答案為:【點(diǎn)睛】本題考查向量的數(shù)量積,重點(diǎn)考查向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.15、【解析】
由知x>0,故.令,則.當(dāng)時,;當(dāng)時,.所以在(0,e)上遞增,在(e,+)上遞減.故,即.16、【解析】
利用,解出,即可求出雙曲線的漸近線方程.【詳解】,且,,,該雙曲線的漸近線方程為:.故答案為:.【點(diǎn)睛】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關(guān)系,考查了運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】
(1)取的中點(diǎn),連.可證得,,于是可得平面,進(jìn)而可得結(jié)論成立.(2)運(yùn)用幾何法或向量法求解可得所求角的正弦值.【詳解】(1)證明:取的中點(diǎn),連.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中點(diǎn),連結(jié),∵,∴,又,∴.又由題意得為等邊三角形,∴,∵,∴平面.作,則有平面,∴就是直線與平面所成的角.設(shè),則,在等邊中,.又在中,,故.在中,由余弦定理得,∴,∴直線與平面所成角的正弦值為.解法2:由題意可得,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則在直角三角形中,可得,作于,則有平面幾何知識可得,∴.又可得,.∴,.設(shè)平面的一個法向量為,由,得,令,則得.又,設(shè)直線與平面所成的角為,則.所以直線與平面所成角的正弦值為.【點(diǎn)睛】利用向量法求解直線和平面所成角時,關(guān)鍵點(diǎn)是恰當(dāng)建立空間直角坐標(biāo)系,確定斜線的方向向量和平面的法向量.解題時通過平面的法向量和直線的方向向量來求,即求出斜線的方向向量與平面的法向量所夾的銳角或鈍角的補(bǔ)角,取其余角就是斜線與平面所成的角.求解時注意向量的夾角與線面角間的關(guān)系.18、(1)證明見解析;(2)見解析;(3)存在,1.【解析】
(1),求出單調(diào)區(qū)間,進(jìn)而求出,即可證明結(jié)論;(2)對(或)是否恒成立分類討論,若恒成立,沒有極值點(diǎn),若不恒成立,求出的解,即可求出結(jié)論;(3)令,可證恒成立,而,由(2)得,在為減函數(shù),在上單調(diào)遞減,在都存在,不滿足,當(dāng)時,設(shè),且,只需求出在單調(diào)遞增時的取值范圍即可.【詳解】(1),,,當(dāng)時,,當(dāng)時,,∴,故.(2)由題知,,,①當(dāng)時,,所以在上單調(diào)遞減,沒有極值;②當(dāng)時,,得,當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞減,在上單調(diào)遞增.故在處取得極小值,無極大值.(3)不妨令,設(shè)在恒成立,在單調(diào)遞增,,在恒成立,所以,當(dāng)時,,由(2)知,當(dāng)時,在上單調(diào)遞減,恒成立;所以不等式在上恒成立,只能.當(dāng)時,,由(1)知在上單調(diào)遞減,所以,不滿足題意.當(dāng)時,設(shè),因為,所以,,即,所以在上單調(diào)遞增,又,所以時,恒成立,即恒成立,故存在,使得不等式在上恒成立,此時的最小值是1.【點(diǎn)睛】本題考查導(dǎo)數(shù)綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、極值最值、不等式證明,考查分類討論思想,意在考查直觀想象、邏輯推理、數(shù)學(xué)計算能力,屬于較難題.19、(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計算出,從而求出角,根據(jù)題設(shè)和余弦定理可以求出和的值,從而求出的周長為.試題解析:(1)由題設(shè)得,即.由正弦定理得.故.(2)由題設(shè)及(1)得,即.所以,故.由題設(shè)得,即.由余弦定理得,即,得.故的周長為.點(diǎn)睛:在處理解三角形問題時,要注意抓住題目所給的條件,當(dāng)題設(shè)中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,有時需將角的關(guān)系轉(zhuǎn)化為邊的關(guān)系;解三角形問題常見的一種考題是“已知一條邊的長度和它所對的角,求面積或周長的取值范圍”或者“已知一條邊的長度和它所對的角,再有另外一個條件,求面積或周長的值”,這類問題的通法思路是:全部轉(zhuǎn)化為角的關(guān)系,建立函數(shù)關(guān)系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.20、(1)(2)【解析】
(1)利用正弦,余弦定理對式子化簡求解即可;(2)利用余弦定理以及三角形的面積,求解三角形的周長即可.【詳解】(1),由正弦定理可得:,即:,由余弦定理得.(2)∵,所以,,又,且,,的周長為【點(diǎn)睛】本題考查正弦定理以及余弦定理的應(yīng)用,三角形的面積公式,也考查計算能力,屬于基礎(chǔ)題.21、(1)1;(2)【解析】
(1),在和中分別運(yùn)用余弦定理可表示出,運(yùn)用算兩次的思想即可求得,進(jìn)而求出;(2)在中,根據(jù)余弦定理和基本不等式,可求得,再由三角形的面積公式以及正弦函數(shù)的有界性,求出的面積的最大值.【詳解】(1)由題設(shè),則在和中由余弦定理得:,即解得,∴(2)在中由余弦定理得,即,∴所以面積的最大值為,此時.【點(diǎn)睛】本題主要考查余弦定理在解三角形中的應(yīng)用,以及三角形面積公式的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于中檔題.22、(1);(2)見解析【解析】
(1)對函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度電力工程項目檔案管理承包合同3篇
- 2024年城市亮化工程采購合同2篇
- 2024年度投標(biāo)專員招標(biāo)項目合同解除及違約責(zé)任合同3篇
- 2024年標(biāo)準(zhǔn)離婚合同范本:詳盡條款解析一
- 2024年按揭中二手房買賣合同范本(含違約責(zé)任明確條款)3篇
- 2024年生產(chǎn)線建設(shè)與環(huán)境保護(hù)合同3篇
- 2024年瑜伽館與公益活動組織合作合同2篇
- 2024年房產(chǎn)買賣合同附抵押權(quán)設(shè)定及貸款還款期限調(diào)整0193篇
- 2024年度項目負(fù)責(zé)人任期目標(biāo)管理與聘用合同3篇
- 2024年度船舶租賃合同模板3篇
- 歌唱語音智慧樹知到期末考試答案章節(jié)答案2024年齊魯師范學(xué)院
- MOOC 美在民間-南京農(nóng)業(yè)大學(xué) 中國大學(xué)慕課答案
- 建筑工程施工特點(diǎn)及傷亡事故預(yù)防措施
- 設(shè)備故障報修維修記錄單
- 一般行業(yè)建設(shè)項目安全條件和設(shè)施綜合分析報告
- 四年級體育與健康上冊復(fù)習(xí)題與答案
- 工程水文學(xué)總復(fù)習(xí)綜述
- 蹲踞式跳遠(yuǎn)教學(xué)課件
- 智能系統(tǒng)工程自評報告
- 賽柏斯涂層防水施工工法
- 2_電壓降計算表(10kV及以下線路)
評論
0/150
提交評論