版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列計(jì)算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y62.小張同學(xué)制作了四張材質(zhì)和外觀完全一樣的書簽,每個(gè)書簽上寫著一本書的名稱或一個(gè)作者姓名,分別是:《西游記》、施耐庵、《安徒生童話》、安徒生,從這四張書簽中隨機(jī)抽取兩張,則抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的概率是()A. B. C. D.3.我國(guó)平均每平方千米的土地一年從太陽(yáng)得到的能量,相當(dāng)于燃燒130000000kg的煤所產(chǎn)生的能量.把130000000kg用科學(xué)記數(shù)法可表示為()A.13×kg B.0.13×kg C.1.3×kg D.1.3×kg4.等式組的解集在下列數(shù)軸上表示正確的是(
).A.
B.C.
D.5.對(duì)于代數(shù)式ax2+bx+c(a≠0),下列說(shuō)法正確的是()①如果存在兩個(gè)實(shí)數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則a+bx+c=a(x-p)(x-q)②存在三個(gè)實(shí)數(shù)m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,則一定存在兩個(gè)實(shí)數(shù)m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,則一定存在兩個(gè)實(shí)數(shù)m<n,使am2+bm+c<0<an2+bn+cA.③ B.①③ C.②④ D.①③④6.如圖,點(diǎn)D、E分別為△ABC的邊AB、AC上的中點(diǎn),則△ADE的面積與四邊形BCED的面積的比為()A.1:2 B.1:3 C.1:4 D.1:17.已知x2-2x-3=0,則2x2-4x的值為()A.-6 B.6 C.-2或6 D.-2或308.如圖,在邊長(zhǎng)為6的菱形中,,以點(diǎn)為圓心,菱形的高為半徑畫弧,交于點(diǎn),交于點(diǎn),則圖中陰影部分的面積是()A. B. C. D.9.如圖,在△ABC中,點(diǎn)D是邊AB上的一點(diǎn),∠ADC=∠ACB,AD=2,BD=6,則邊AC的長(zhǎng)為()A.2 B.4 C.6 D.810.如圖,在下列條件中,不能判定直線a與b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°11.如圖,菱形ABCD中,E.F分別是AB、AC的中點(diǎn),若EF=3,則菱形ABCD的周長(zhǎng)是()A.12 B.16 C.20 D.2412.如圖,AB是⊙O的直徑,點(diǎn)C、D是圓上兩點(diǎn),且∠AOC=126°,則∠CDB=()A.54° B.64° C.27° D.37°二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.用科學(xué)計(jì)數(shù)器計(jì)算:2×sin15°×cos15°=_______(結(jié)果精確到0.01).14.若關(guān)于x的二次函數(shù)y=ax2+a2的最小值為4,則a的值為_(kāi)_____.15.因式分解:a2b-4ab+4b=______.16.因式分解:2m2﹣8n2=.17.有下列各式:①;②;③;④.其中,計(jì)算結(jié)果為分式的是_____.(填序號(hào))18.方程的解是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,某校教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22o時(shí),教學(xué)樓在建筑物的墻上留下高2m的影子CE;而當(dāng)光線與地面的夾角是45o時(shí),教學(xué)樓頂A在地面上的影子F與墻角C有13m的距離(B、F、C在一條直線上).求教學(xué)樓AB的高度;學(xué)校要在A、E之間掛一些彩旗,請(qǐng)你求出A、E之間的距離(結(jié)果保留整數(shù)).20.(6分)如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+3交x軸于B、C兩點(diǎn)(點(diǎn)B在左,點(diǎn)C在右),交y軸于點(diǎn)A,且OA=OC,B(﹣1,0).(1)求此拋物線的解析式;(2)如圖2,點(diǎn)D為拋物線的頂點(diǎn),連接CD,點(diǎn)P是拋物線上一動(dòng)點(diǎn),且在C、D兩點(diǎn)之間運(yùn)動(dòng),過(guò)點(diǎn)P作PE∥y軸交線段CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段PE長(zhǎng)為d,寫出d與t的關(guān)系式(不要求寫出自變量t的取值范圍);(3)如圖3,在(2)的條件下,連接BD,在BD上有一動(dòng)點(diǎn)Q,且DQ=CE,連接EQ,當(dāng)∠BQE+∠DEQ=90°時(shí),求此時(shí)點(diǎn)P的坐標(biāo).21.(6分)如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測(cè)角儀,在A處測(cè)得電線桿上C處的仰角為30°,已知測(cè)角儀高AB為1.5米,求拉線CE的長(zhǎng)(結(jié)果保留根號(hào)).22.(8分)已知甲、乙兩地相距90km,A,B兩人沿同一公路從甲地出發(fā)到乙地,A騎摩托車,B騎電動(dòng)車,圖中DE,OC分別表示A,B離開(kāi)甲地的路程s(km)與時(shí)間t(h)的函數(shù)關(guān)系的圖象,根據(jù)圖象解答下列問(wèn)題:(1)請(qǐng)用t分別表示A、B的路程sA、sB;(2)在A出發(fā)后幾小時(shí),兩人相距15km?23.(8分)如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點(diǎn)E,DA平分∠BDE.(1)求證:AE是⊙O的切線;(2)如果AB=4,AE=2,求⊙O的半徑.24.(10分)2018年4月份,鄭州市教育局針對(duì)鄭州市中小學(xué)參與課外輔導(dǎo)進(jìn)行調(diào)查,根據(jù)學(xué)生參與課外輔導(dǎo)科目的數(shù)量,分成了:1科、2科、3科和4科,以下簡(jiǎn)記為:1、2、3、4,并根據(jù)調(diào)查結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(未完成),請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:(1)本次被調(diào)查的學(xué)員共有人;在被調(diào)查者中參加“3科”課外輔導(dǎo)的有人.(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)已知鄭州市中小學(xué)約有24萬(wàn)人,那么請(qǐng)你估計(jì)一下參與輔導(dǎo)科目不多于2科的學(xué)生大約有多少人.25.(10分)計(jì)算:﹣(﹣2)2+|﹣3|﹣20180×26.(12分)(1)計(jì)算:﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化簡(jiǎn),再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=1.27.(12分)畫出二次函數(shù)y=(x﹣1)2的圖象.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
根據(jù)合并同類項(xiàng)的法則,積的乘方,完全平方公式,同底數(shù)冪的乘法的性質(zhì),對(duì)各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:A、2x-x=x,錯(cuò)誤;B、x2?x3=x5,錯(cuò)誤;C、(m-n)2=m2-2mn+n2,錯(cuò)誤;D、(-xy3)2=x2y6,正確;故選D.【點(diǎn)睛】考查了整式的運(yùn)算能力,對(duì)于相關(guān)的整式運(yùn)算法則要求學(xué)生很熟練,才能正確求出結(jié)果.2、D【解析】
根據(jù)題意先畫出樹(shù)狀圖得出所有等情況數(shù)和到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有12種等情況數(shù),抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的有2種情況,則抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的概率是=;故選D.【點(diǎn)睛】此題考查的是用列表法或樹(shù)狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹(shù)狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.3、D【解析】試題分析:科學(xué)計(jì)數(shù)法是指:a×,且,n為原數(shù)的整數(shù)位數(shù)減一.4、B【解析】【分析】分別求出每一個(gè)不等式的解集,然后在數(shù)軸上表示出每個(gè)不等式的解集,對(duì)比即可得.【詳解】,解不等式①得,x>-3,解不等式②得,x≤2,在數(shù)軸上表示①、②的解集如圖所示,故選B.【點(diǎn)睛】本題考查了解一元一次不等式組,在數(shù)軸上表示不等式的解集,不等式的解集在數(shù)軸上表示的方法:把每個(gè)不等式的解集在數(shù)軸上表示出來(lái)(>,≥向右畫;<,≤向左畫),數(shù)軸上的點(diǎn)把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個(gè)數(shù)一樣,那么這段就是不等式組的解集.有幾個(gè)就要幾個(gè).在表示解集時(shí)“≥”,“≤”要用實(shí)心圓點(diǎn)表示;“<”,“>”要用空心圓點(diǎn)表示.5、A【解析】設(shè)(1)如果存在兩個(gè)實(shí)數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則說(shuō)明在中,當(dāng)x=p和x=q時(shí)的y值相等,但并不能說(shuō)明此時(shí)p、q是與x軸交點(diǎn)的橫坐標(biāo),故①中結(jié)論不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,則說(shuō)明在中當(dāng)x=m、n、s時(shí),對(duì)應(yīng)的y值相等,因此m、n、s中至少有兩個(gè)數(shù)是相等的,故②錯(cuò)誤;(3)如果ac<0,則b2-4ac>0,則的圖象和x軸必有兩個(gè)不同的交點(diǎn),所以此時(shí)一定存在兩個(gè)實(shí)數(shù)m<n,使am2+bm+c<0<an2+bn+c,故③在結(jié)論正確;(4)如果ac>0,則b2-4ac的值的正負(fù)無(wú)法確定,此時(shí)的圖象與x軸的交點(diǎn)情況無(wú)法確定,所以④中結(jié)論不一定成立.綜上所述,四種說(shuō)法中正確的是③.故選A.6、B【解析】
根據(jù)中位線定理得到DE∥BC,DE=BC,從而判定△ADE∽△ABC,然后利用相似三角形的性質(zhì)求解.【詳解】解:∵D、E分別為△ABC的邊AB、AC上的中點(diǎn),∴DE是△ABC的中位線,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面積:△ABC的面積==1:4,∴△ADE的面積:四邊形BCED的面積=1:3;故選B.【點(diǎn)睛】本題考查三角形中位線定理及相似三角形的判定與性質(zhì).7、B【解析】方程兩邊同時(shí)乘以2,再化出2x2-4x求值.解:x2-2x-3=0
2×(x2-2x-3)=0
2×(x2-2x)-6=0
2x2-4x=6
故選B.8、B【解析】
由菱形的性質(zhì)得出AD=AB=6,∠ADC=120°,由三角函數(shù)求出菱形的高DF,圖中陰影部分的面積=菱形ABCD的面積-扇形DEFG的面積,根據(jù)面積公式計(jì)算即可.【詳解】∵四邊形ABCD是菱形,∠DAB=60°,
∴AD=AB=6,∠ADC=180°-60°=120°,
∵DF是菱形的高,
∴DF⊥AB,
∴DF=AD?sin60°=6×=3,
∴陰影部分的面積=菱形ABCD的面積-扇形DEFG的面積=6×3=18-9π.
故選B.【點(diǎn)睛】本題考查了菱形的性質(zhì)、三角函數(shù)、菱形和扇形面積的計(jì)算;由三角函數(shù)求出菱形的高是解決問(wèn)題的關(guān)鍵.9、B【解析】
證明△ADC∽△ACB,根據(jù)相似三角形的性質(zhì)可推導(dǎo)得出AC2=AD?AB,由此即可解決問(wèn)題.【詳解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴,∴AC2=AD?AB=2×8=16,∵AC>0,∴AC=4,故選B.【點(diǎn)睛】本題考查相似三角形的判定和性質(zhì)、解題的關(guān)鍵是正確尋找相似三角形解決問(wèn)題.10、C【解析】
解:A.∵∠1與∠2是直線a,b被c所截的一組同位角,∴∠1=∠2,可以得到a∥b,∴不符合題意B.∵∠2與∠3是直線a,b被c所截的一組內(nèi)錯(cuò)角,∴∠2=∠3,可以得到a∥b,∴不符合題意,C.∵∠3與∠5既不是直線a,b被任何一條直線所截的一組同位角,內(nèi)錯(cuò)角,∴∠3=∠5,不能得到a∥b,∴符合題意,D.∵∠3與∠4是直線a,b被c所截的一組同旁內(nèi)角,∴∠3+∠4=180°,可以得到a∥b,∴不符合題意,故選C.【點(diǎn)睛】本題考查平行線的判定,難度不大.11、D【解析】
根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求出,再根據(jù)菱形的周長(zhǎng)公式列式計(jì)算即可得解.【詳解】、分別是、的中點(diǎn),是的中位線,,菱形的周長(zhǎng).故選:.【點(diǎn)睛】本題主要考查了菱形的四邊形都相等,三角形的中位線平行于第三邊并且等于第三邊的一半,求出菱形的邊長(zhǎng)是解題的關(guān)鍵.12、C【解析】
由∠AOC=126°,可求得∠BOC的度數(shù),然后由圓周角定理,求得∠CDB的度數(shù).【詳解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°故選:C.【點(diǎn)睛】此題考查了圓周角定理.注意在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、0.50【解析】
直接使用科學(xué)計(jì)算器計(jì)算即可,結(jié)果需保留二位有效數(shù)字.【詳解】用科學(xué)計(jì)算器計(jì)算得0.5,故填0.50,【點(diǎn)睛】此題主要考查科學(xué)計(jì)算器的使用,注意結(jié)果保留二位有效數(shù)字.14、1.【解析】
根據(jù)二次函數(shù)的性質(zhì)列出不等式和等式,計(jì)算即可.【詳解】解:∵關(guān)于x的二次函數(shù)y=ax1+a1的最小值為4,
∴a1=4,a>0,
解得,a=1,
故答案為1.【點(diǎn)睛】本題考查的是二次函數(shù)的最值問(wèn)題,掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.15、【解析】
先提公因式b,然后再運(yùn)用完全平方公式進(jìn)行分解即可.【詳解】a2b﹣4ab+4b=b(a2﹣4a+4)=b(a﹣2)2,故答案為b(a﹣2)2.【點(diǎn)睛】本題考查了利用提公因式法與公式法分解因式,熟練掌握完全平方公式的結(jié)構(gòu)特征是解本題的關(guān)鍵.16、2(m+2n)(m﹣2n).【解析】試題分析:根據(jù)因式分解法的步驟,有公因式的首先提取公因式,可知首先提取系數(shù)的最大公約數(shù)2,進(jìn)一步發(fā)現(xiàn)提公因式后,可以用平方差公式繼續(xù)分解.解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).考點(diǎn):提公因式法與公式法的綜合運(yùn)用.17、②④【解析】
根據(jù)分式的定義,將每個(gè)式子計(jì)算后,即可求解.【詳解】=1不是分式,=,=3不是分式,=故選②④.【點(diǎn)睛】本題考查分式的判斷,解題的關(guān)鍵是清楚分式的定義.18、1【解析】,,x=1,代入最簡(jiǎn)公分母,x=1是方程的解.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)2m(2)27m【解析】
(1)首先構(gòu)造直角三角形△AEM,利用,求出即可.(2)利用Rt△AME中,,求出AE即可.【詳解】解:(1)過(guò)點(diǎn)E作EM⊥AB,垂足為M.設(shè)AB為x.在Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+1.在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,又∵,∴,解得:x≈2.∴教學(xué)樓的高2m.(2)由(1)可得ME=BC=x+1≈2+1=3.在Rt△AME中,,∴AE=MEcos22°≈.∴A、E之間的距離約為27m.20、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解析】
(1)由拋物線y=ax2+bx+3與y軸交于點(diǎn)A,可求得點(diǎn)A的坐標(biāo),又OA=OC,可求得點(diǎn)C的坐標(biāo),然后分別代入B,C的坐標(biāo)求出a,b,即可求得二次函數(shù)的解析式;(2)首先延長(zhǎng)PE交x軸于點(diǎn)H,現(xiàn)將解析式換為頂點(diǎn)解析式求得D(1,4),設(shè)直線CD的解析式為y=kx+b,再將點(diǎn)C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據(jù)d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于點(diǎn)K,作QM∥x軸交DK于點(diǎn)T,延長(zhǎng)PE、EP交OC于H、交QM于M,作ER⊥DK于點(diǎn)R,記QE與DK的交點(diǎn)為N,根據(jù)題意在(2)的條件下先證明△DQT≌△ECH,再根據(jù)全等三角形的性質(zhì)即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【詳解】解:(1)當(dāng)x=0時(shí),y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)B(﹣1,0),C(3,0)∴,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)如圖1,延長(zhǎng)PE交x軸于點(diǎn)H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線CD的解析式為y=kx+b,將點(diǎn)C(3,0)、D(1,4)代入,得:,解得:,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如圖2,作DK⊥OC于點(diǎn)K,作QM∥x軸交DK于點(diǎn)T,延長(zhǎng)PE、EP交OC于H、交QM于M,作ER⊥DK于點(diǎn)R,記QE與DK的交點(diǎn)為N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=,∴P(,).【點(diǎn)睛】本題考查了二次函數(shù)的綜合題,解題的關(guān)鍵是熟練的掌握二次函數(shù)的相關(guān)知識(shí)點(diǎn).21、CE的長(zhǎng)為(4+)米【解析】
由題意可先過(guò)點(diǎn)A作AH⊥CD于H.在Rt△ACH中,可求出CH,進(jìn)而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長(zhǎng).【詳解】過(guò)點(diǎn)A作AH⊥CD,垂足為H,由題意可知四邊形ABDH為矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH?tan∠CAH,∴CH=AH?tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉線CE的長(zhǎng)為(4+)米.考點(diǎn):解直角三角形的應(yīng)用-仰角俯角問(wèn)題22、(1)sA=45t﹣45,sB=20t;(2)在A出發(fā)后小時(shí)或小時(shí),兩人相距15km.【解析】
(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以分別求得s與t的函數(shù)關(guān)系式;(2)根據(jù)(1)中的函數(shù)解析式可以解答本題.【詳解】解:(1)設(shè)sA與t的函數(shù)關(guān)系式為sA=kt+b,,得,即sA與t的函數(shù)關(guān)系式為sA=45t﹣45,設(shè)sB與t的函數(shù)關(guān)系式為sB=at,60=3a,得a=20,即sB與t的函數(shù)關(guān)系式為sB=20t;(2)|45t﹣45﹣20t|=15,解得,t1=,t2=,,,即在A出發(fā)后小時(shí)或小時(shí),兩人相距15km.【點(diǎn)睛】本題主要考查一次函數(shù)的應(yīng)用,涉及到直線上點(diǎn)的坐標(biāo)與方程,利用待定系數(shù)法求一次函數(shù)的解析式是解題的關(guān)鍵.23、(1)見(jiàn)解析;(1)⊙O半徑為【解析】
(1)連接OA,利用已知首先得出OA∥DE,進(jìn)而證明OA⊥AE就能得到AE是⊙O的切線;(1)通過(guò)證明△BAD∽△AED,再利用對(duì)應(yīng)邊成比例關(guān)系從而求出⊙O半徑的長(zhǎng).【詳解】解:(1)連接OA,∵OA=OD,∴∠1=∠1.∵DA平分∠BDE,∴∠1=∠2.∴∠1=∠2.∴OA∥DE.∴∠OAE=∠4,∵AE⊥CD,∴∠4=90°.∴∠OAE=90°,即OA⊥AE.又∵點(diǎn)A在⊙O上,∴AE是⊙O的切線.(1)∵BD是⊙O的直徑,∴∠BAD=90°.∵∠3=90°,∴∠BAD=∠3.又∵∠1=∠2,∴△BAD∽△AED.∴,∵BA=4,AE=1,∴BD=1AD.在Rt△BAD中,根據(jù)勾股定理,得BD=.∴⊙O半徑為.24、(1)50,10;(2)見(jiàn)解析.(3)16.8萬(wàn)【解析】
(1)結(jié)合條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖中的參加“3科”課外輔導(dǎo)人數(shù)及百分比,求得總?cè)藬?shù)為50人;再由總?cè)藬?shù)減去參加“1科”,“2科”,“4科”課外輔導(dǎo)人數(shù)即可求出答案.(2)由(1)知在被調(diào)查者中參加“3科”課外輔導(dǎo)的有10人,由扇形統(tǒng)計(jì)圖可知參加“4科”課外輔導(dǎo)人數(shù)占比為10%,故參加“4科”課外輔導(dǎo)人數(shù)的有5人.(3)因?yàn)閰⒓印?
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年房產(chǎn)租賃合同(配偶間)
- 2024年度自然人攝影服務(wù)合同
- 2024年投資擔(dān)保精簡(jiǎn)合同
- 2024年快遞行業(yè)跨界合作與業(yè)務(wù)融合合同
- 2024年新品:股權(quán)轉(zhuǎn)讓中介服務(wù)合同
- 2024年廣播廣告租賃協(xié)議
- 2024年式家具定制合作合同
- 2024年度物流服務(wù)合同:含服務(wù)范圍、服務(wù)標(biāo)準(zhǔn)、服務(wù)費(fèi)用
- 2024年搬運(yùn)工職業(yè)安全協(xié)議
- 2024光伏設(shè)備買賣合同模板
- 安保方案模板
- 體育室內(nèi)課《籃球ppt課件》
- 安裝培訓(xùn)方案
- 2023邊緣物聯(lián)代理技術(shù)要求
- 航空航天類專業(yè)大學(xué)生職業(yè)生涯規(guī)劃書
- 餐廳小票打印模板
- 腹脹護(hù)理課件
- 水稻栽培技術(shù)-水稻常規(guī)栽培技術(shù)
- 常見(jiàn)營(yíng)養(yǎng)相關(guān)慢性疾病的營(yíng)養(yǎng)指導(dǎo)
- 標(biāo)準(zhǔn)報(bào)價(jià)單模板(二)
- 《mc入門教程》課件
評(píng)論
0/150
提交評(píng)論