版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.為考察兩名實(shí)習(xí)工人的工作情況,質(zhì)檢部將他們工作第一周每天生產(chǎn)合格產(chǎn)品的個(gè)數(shù)整理成甲,乙兩組數(shù)據(jù),如下表:甲26778乙23488關(guān)于以上數(shù)據(jù),說(shuō)法正確的是()A.甲、乙的眾數(shù)相同 B.甲、乙的中位數(shù)相同C.甲的平均數(shù)小于乙的平均數(shù) D.甲的方差小于乙的方差2.如圖,一個(gè)斜邊長(zhǎng)為10cm的紅色三角形紙片,一個(gè)斜邊長(zhǎng)為6cm的藍(lán)色三角形紙片,一張黃色的正方形紙片,拼成一個(gè)直角三角形,則紅、藍(lán)兩張紙片的面積之和是()A.60cm2 B.50cm2 C.40cm2 D.30cm23.定義運(yùn)算“※”為:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.則函數(shù)y=2※x的圖象大致是()A. B.C. D.4.某校九年級(jí)共有1、2、3、4四個(gè)班,現(xiàn)從這四個(gè)班中隨機(jī)抽取兩個(gè)班進(jìn)行一場(chǎng)籃球比賽,則恰好抽到1班和2班的概率是()A.18 B.16 C.35.下列代數(shù)運(yùn)算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x56.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過(guò)點(diǎn)O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長(zhǎng)度是()A.3cm B.cm C.2.5cm D.cm7.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點(diǎn),將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.8.扇形的半徑為30cm,圓心角為120°,用它做成一個(gè)圓錐的側(cè)面,則圓錐底面半徑為()A.10cm B.20cm C.10πcm D.20πcm9.下列圖形中,既是中心對(duì)稱圖形又是軸對(duì)稱圖形的是()A. B. C. D.10.如圖所示的幾何體是由4個(gè)大小相同的小立方體搭成,其俯視圖是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如果一個(gè)矩形的面積是40,兩條對(duì)角線夾角的正切值是,那么它的一條對(duì)角線長(zhǎng)是__________.12.如圖,AB為圓O的直徑,弦CD⊥AB,垂足為點(diǎn)E,連接OC,若OC=5,CD=8,則AE=______.13.如圖,某數(shù)學(xué)興趣小組將邊長(zhǎng)為5的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細(xì)),則所得的扇形ABD的面積為_(kāi)____.14.如圖,正方形ABCD邊長(zhǎng)為1,以AB為直徑作半圓,點(diǎn)P是CD中點(diǎn),BP與半圓交于點(diǎn)Q,連結(jié)DQ.給出如下結(jié)論:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正確結(jié)論是_________.(填寫(xiě)序號(hào))15.有一組數(shù)據(jù):3,5,5,6,7,這組數(shù)據(jù)的眾數(shù)為_(kāi)____.16.計(jì)算(﹣3)+(﹣9)的結(jié)果為_(kāi)_____.17.已知a,b為兩個(gè)連續(xù)的整數(shù),且a<<b,則ba=_____.三、解答題(共7小題,滿分69分)18.(10分)作圖題:在∠ABC內(nèi)找一點(diǎn)P,使它到∠ABC的兩邊的距離相等,并且到點(diǎn)A、C的距離也相等.(寫(xiě)出作法,保留作圖痕跡)19.(5分)如圖,四邊形ABCD內(nèi)接于圓,對(duì)角線AC與BD相交于點(diǎn)E,F(xiàn)在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.求證:(1)CD⊥DF;(2)BC=2CD.20.(8分)已知,關(guān)于x的方程x2+2x-k=0有兩個(gè)不相等的實(shí)數(shù)根.(1)求k的取值范圍;(2)若x1,x2是這個(gè)方程的兩個(gè)實(shí)數(shù)根,求的值;(3)根據(jù)(2)的結(jié)果你能得出什么結(jié)論?21.(10分)“六一”兒童節(jié)前夕,某縣教育局準(zhǔn)備給留守兒童贈(zèng)送一批學(xué)習(xí)用品,先對(duì)紅星小學(xué)的留守兒童人數(shù)進(jìn)行抽樣統(tǒng)計(jì),發(fā)現(xiàn)各班留守兒童人數(shù)分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:(1)該校有_____個(gè)班級(jí),補(bǔ)全條形統(tǒng)計(jì)圖;(2)求該校各班留守兒童人數(shù)數(shù)據(jù)的平均數(shù),眾數(shù)與中位數(shù);(3)若該鎮(zhèn)所有小學(xué)共有60個(gè)教學(xué)班,請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)該鎮(zhèn)小學(xué)生中,共有多少名留守兒童.22.(10分)每到春夏交替時(shí)節(jié),雌性楊樹(shù)會(huì)以滿天飛絮的方式來(lái)傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們?cè)斐衫_,為了解市民對(duì)治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)查了部分市民(問(wèn)卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.治理?xiàng)钚跻灰荒x哪一項(xiàng)?(單選)A.減少楊樹(shù)新增面積,控制楊樹(shù)每年的栽種量B.調(diào)整樹(shù)種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹(shù)C.選育無(wú)絮楊品種,并推廣種植D.對(duì)雌性楊樹(shù)注射生物干擾素,避免產(chǎn)生飛絮E.其他根據(jù)以上統(tǒng)計(jì)圖,解答下列問(wèn)題:(1)本次接受調(diào)查的市民共有人;(2)扇形統(tǒng)計(jì)圖中,扇形E的圓心角度數(shù)是;(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(4)若該市約有90萬(wàn)人,請(qǐng)估計(jì)贊同“選育無(wú)絮楊品種,并推廣種植”的人數(shù).23.(12分)為落實(shí)“垃圾分類”,環(huán)衛(wèi)部門(mén)要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過(guò)期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.(1)直接寫(xiě)出甲投放的垃圾恰好是A類的概率;(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.24.(14分)已知拋物線,與軸交于兩點(diǎn),與軸交于點(diǎn),且拋物線的對(duì)稱軸為直線.(1)拋物線的表達(dá)式;(2)若拋物線與拋物線關(guān)于直線對(duì)稱,拋物線與軸交于點(diǎn)兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),要使,求所有滿足條件的拋物線的表達(dá)式.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】
分別根據(jù)眾數(shù)、中位數(shù)、平均數(shù)、方差的定義進(jìn)行求解后進(jìn)行判斷即可得.【詳解】甲:數(shù)據(jù)7出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為7,排序后最中間的數(shù)是7,所以中位數(shù)是7,,=4.4,乙:數(shù)據(jù)8出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為8,排序后最中間的數(shù)是4,所以中位數(shù)是4,,=6.4,所以只有D選項(xiàng)正確,故選D.【點(diǎn)睛】本題考查了眾數(shù)、中位數(shù)、平均數(shù)、方差,熟練掌握相關(guān)定義及求解方法是解題的關(guān)鍵.2、D【解析】
標(biāo)注字母,根據(jù)兩直線平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例求出,即,設(shè)BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根據(jù)紅、藍(lán)兩張紙片的面積之和等于大三角形的面積減去正方形的面積計(jì)算即可得解.【詳解】解:如圖,∵正方形的邊DE∥CF,∴∠B=∠AED,∵∠ADE=∠EFB=90°,∴△ADE∽△EFB,∴,∴,設(shè)BF=3a,則EF=5a,∴BC=3a+5a=8a,AC=8a×=a,在Rt△ABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,紅、藍(lán)兩張紙片的面積之和=×a×8a-(5a)1,=a1-15a1,=a1,=×,=30cm1.故選D.【點(diǎn)睛】本題考查根據(jù)相似三角形的性質(zhì)求出直角三角形的兩直角邊,利用紅、藍(lán)兩張紙片的面積之和等于大三角形的面積減去正方形的面積求解是關(guān)鍵.3、C【解析】
根據(jù)定義運(yùn)算“※”為:a※b=,可得y=2※x的函數(shù)解析式,根據(jù)函數(shù)解析式,可得函數(shù)圖象.【詳解】解:y=2※x=,當(dāng)x>0時(shí),圖象是y=對(duì)稱軸右側(cè)的部分;當(dāng)x<0時(shí),圖象是y=對(duì)稱軸左側(cè)的部分,所以C選項(xiàng)是正確的.【點(diǎn)睛】本題考查了二次函數(shù)的圖象,利用定義運(yùn)算“※”為:a※b=得出分段函數(shù)是解題關(guān)鍵.4、B【解析】畫(huà)樹(shù)狀圖展示所有12種等可能的結(jié)果數(shù),再找出恰好抽到1班和2班的結(jié)果數(shù),然后根據(jù)概率公式求解.解:畫(huà)樹(shù)狀圖為:共有12種等可能的結(jié)果數(shù),其中恰好抽到1班和2班的結(jié)果數(shù)為2,所以恰好抽到1班和2班的概率=212故選B.5、D【解析】
分別根據(jù)同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式進(jìn)行逐一計(jì)算即可.【詳解】解:A.(x+1)2=x2+2x+1,故A錯(cuò)誤;B.(x3)2=x6,故B錯(cuò)誤;C.(2x)2=4x2,故C錯(cuò)誤.D.x3?x2=x5,故D正確.故本題選D.【點(diǎn)睛】本題考查的是同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關(guān)鍵.6、D【解析】分析:根據(jù)垂徑定理得出OE的長(zhǎng),進(jìn)而利用勾股定理得出BC的長(zhǎng),再利用相似三角形的判定和性質(zhì)解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點(diǎn)睛:本題考查了垂徑定理,關(guān)鍵是根據(jù)垂徑定理得出OE的長(zhǎng).7、B【解析】
先根據(jù)翻折變換的性質(zhì)得到△DEF≌△AEF,再根據(jù)等腰三角形的性質(zhì)及三角形外角的性質(zhì)可得到∠BED=CDF,設(shè)CD=1,CF=x,則CA=CB=2,再根據(jù)勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設(shè)CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點(diǎn)睛】本題考查的是圖形翻折變換的性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理、三角形外角的性質(zhì),涉及面較廣,但難易適中.8、A【解析】試題解析:扇形的弧長(zhǎng)為:=20πcm,∴圓錐底面半徑為20π÷2π=10cm,故選A.考點(diǎn):圓錐的計(jì)算.9、C【解析】試題解析:A.是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B.是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C.既是中心對(duì)稱圖又是軸對(duì)稱圖形,故本選項(xiàng)正確;D.是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選C.10、C【解析】試題分析:根據(jù)三視圖的意義,可知俯視圖為從上面往下看,因此可知共有三個(gè)正方形,在一條線上.故選C.考點(diǎn):三視圖二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】
如圖,作BH⊥AC于H.由四邊形ABCD是矩形,推出OA=OC=OD=OB,設(shè)OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由題意:21a×4a=40,求出a即可解決問(wèn)題.【詳解】如圖,作BH⊥AC于H.∵四邊形ABCD是矩形,∴OA=OC=OD=OB,設(shè)OA=OC=OD=OB=5a.∵tan∠BOH,∴BH=4a,OH=3a,由題意:21a×4a=40,∴a=1,∴AC=1.故答案為:1.【點(diǎn)睛】本題考查了矩形的性質(zhì)、解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問(wèn)題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題.12、2【解析】試題解析:∵AB為圓O的直徑,弦CD⊥AB,垂足為點(diǎn)E.在直角△OCE中,則AE=OA?OE=5?3=2.故答案為2.13、25【解析】試題解析:由題意14、①②④【解析】
①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結(jié)合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1;
②連接AQ,如圖4,根據(jù)勾股定理可求出BP.易證Rt△AQB∽R(shí)t△BCP,運(yùn)用相似三角形的性質(zhì)可求出BQ,從而求出PQ的值,就可得到的值;③過(guò)點(diǎn)Q作QH⊥DC于H,如圖4.易證△PHQ∽△PCB,運(yùn)用相似三角形的性質(zhì)可求出QH,從而可求出S△DPQ的值;④過(guò)點(diǎn)Q作QN⊥AD于N,如圖3.易得DP∥NQ∥AB,根據(jù)平行線分線段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中運(yùn)用三角函數(shù)的定義,就可求出cos∠ADQ的值.【詳解】解:①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結(jié)合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1.故①正確;②連接AQ,如圖4.則有CP=,BP=.易證Rt△AQB∽R(shí)t△BCP,運(yùn)用相似三角形的性質(zhì)可求得BQ=,則PQ=,∴.故②正確;③過(guò)點(diǎn)Q作QH⊥DC于H,如圖4.易證△PHQ∽△PCB,運(yùn)用相似三角形的性質(zhì)可求得QH=,∴S△DPQ=DP?QH=××=.故③錯(cuò)誤;④過(guò)點(diǎn)Q作QN⊥AD于N,如圖3.易得DP∥NQ∥AB,根據(jù)平行線分線段成比例可得,則有,解得:DN=.由DQ=1,得cos∠ADQ=.故④正確.綜上所述:正確結(jié)論是①②④.故答案為:①②④.【點(diǎn)睛】本題主要考查了圓周角定理、平行四邊形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線分線段成比例、等腰三角形的性質(zhì)、平行線的性質(zhì)、銳角三角函數(shù)的定義、勾股定理等知識(shí),綜合性比較強(qiáng),常用相似三角形的性質(zhì)、勾股定理、三角函數(shù)的定義來(lái)建立等量關(guān)系,應(yīng)靈活運(yùn)用.15、1【解析】
根據(jù)眾數(shù)的概念進(jìn)行求解即可得.【詳解】在數(shù)據(jù)3,1,1,6,7中1出現(xiàn)次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)為1,故答案為:1.【點(diǎn)睛】本題考查了眾數(shù)的概念,熟知一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù)是解題的關(guān)鍵.16、-1【解析】試題分析:利用同號(hào)兩數(shù)相加的法則計(jì)算即可得原式=﹣(3+9)=﹣1,故答案為﹣1.17、1【解析】
根據(jù)已知a<<b,結(jié)合a、b是兩個(gè)連續(xù)的整數(shù)可得a、b的值,即可求解.【詳解】解:∵a,b為兩個(gè)連續(xù)的整數(shù),且a<<b,∴a=2,b=3,∴ba=32=1.故答案為1.【點(diǎn)睛】此題考查的是如何根據(jù)無(wú)理數(shù)的范圍確定兩個(gè)有理數(shù)的值,題中根據(jù)的取值范圍,可以很容易得到其相鄰兩個(gè)整數(shù),再結(jié)合已知條件即可確定a、b的值,三、解答題(共7小題,滿分69分)18、見(jiàn)解析【解析】
先作出∠ABC的角平分線,再連接AC,作出AC的垂直平分線,兩條平分線的交點(diǎn)即為所求點(diǎn).【詳解】①以B為圓心,以任意長(zhǎng)為半徑畫(huà)弧,分別交BC、AB于D、E兩點(diǎn);②分別以D、E為圓心,以大于DE為半徑畫(huà)圓,兩圓相交于F點(diǎn);③連接AF,則直線AF即為∠ABC的角平分線;⑤連接AC,分別以A、C為圓心,以大于AC為半徑畫(huà)圓,兩圓相交于F、H兩點(diǎn);⑥連接FH交BF于點(diǎn)M,則M點(diǎn)即為所求.【點(diǎn)睛】本題考查的是角平分線及線段垂直平分線的作法,熟練掌握是解題的關(guān)鍵.19、(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.【解析】
(1)利用在同圓中所對(duì)的弧相等,弦相等,所對(duì)的圓周角相等,三角形內(nèi)角和可證得∠CDF=90°,則CD⊥DF;(2)應(yīng)先找到BC的一半,證明BC的一半和CD相等即可.【詳解】證明:(1)∵AB=AD,∴弧AB=弧AD,∠ADB=∠ABD.∵∠ACB=∠ADB,∠ACD=∠ABD,∴∠ACB=∠ADB=∠ABD=∠ACD.∴∠ADB=(180°﹣∠BAD)÷2=90°﹣∠DFC.∴∠ADB+∠DFC=90°,即∠ACD+∠DFC=90°,∴CD⊥DF.(2)過(guò)F作FG⊥BC于點(diǎn)G,∵∠ACB=∠ADB,又∵∠BFC=∠BAD,∴∠FBC=∠ABD=∠ADB=∠ACB.∴FB=FC.∴FG平分BC,G為BC中點(diǎn),∵在△FGC和△DFC中,∴△FGC≌△DFC(ASA),∴∴BC=2CD.【點(diǎn)睛】本題用到的知識(shí)點(diǎn)為:同圓中,相等的弧所對(duì)的弦相等,所對(duì)的圓周角相等,注意把所求角的度數(shù)進(jìn)行合理分割;證兩條線段相等,應(yīng)證這兩條線段所在的三角形全等.20、(1)k>-1;(2)2;(3)k>-1時(shí),的值與k無(wú)關(guān).【解析】
(1)由題意得該方程的根的判別式大于零,列出不等式解答即可.(2)將要求的代數(shù)式通分相加轉(zhuǎn)化為含有兩根之和與兩根之積的形式,再根據(jù)根與系數(shù)的關(guān)系代數(shù)求值即可.(3)結(jié)合(1)和(2)結(jié)論可見(jiàn),k>-1時(shí),的值為定值2,與k無(wú)關(guān).【詳解】(1)∵方程有兩個(gè)不等實(shí)根,∴△>0,即4+4k>0,∴k>-1(2)由根與系數(shù)關(guān)系可知x1+x2=-2,x1x2=-k,∴(3)由(1)可知,k>-1時(shí),的值與k無(wú)關(guān).【點(diǎn)睛】本題考查了一元二次方程的根的判別式,根與系數(shù)的關(guān)系等知識(shí),熟練掌握相關(guān)知識(shí)點(diǎn)是解答關(guān)鍵.21、(1)16;(2)平均數(shù)是3,眾數(shù)是10,中位數(shù)是3;(3)1.【解析】
(1)根據(jù)有7名留守兒童班級(jí)有2個(gè),所占的百分比是2.5%,即可求得班級(jí)的總個(gè)數(shù),再求出有8名留守兒童班級(jí)的個(gè)數(shù),進(jìn)而補(bǔ)全條形統(tǒng)計(jì)圖;(2)將這組數(shù)據(jù)按照從小到大排列即可求得統(tǒng)計(jì)的這組留守兒童人數(shù)數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)利用班級(jí)數(shù)60乘以(2)中求得的平均數(shù)即可.【詳解】解:(1)該校的班級(jí)數(shù)是:2÷2.5%=16(個(gè)).則人數(shù)是8名的班級(jí)數(shù)是:16﹣1﹣2﹣6﹣2=5(個(gè)).條形統(tǒng)計(jì)圖補(bǔ)充如下圖所示:故答案為16;(2)每班的留守兒童的平均數(shù)是:(1×6+2×7+5×8+6×10+2×2)÷16=3將這組數(shù)據(jù)按照從小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.故這組數(shù)據(jù)的眾數(shù)是10,中位數(shù)是(8+10)÷2=3.即統(tǒng)計(jì)的這組留守兒童人數(shù)數(shù)據(jù)的平均數(shù)是3,眾數(shù)是10,中位數(shù)是3;(3)該鎮(zhèn)小學(xué)生中,共有留守兒童60×3=1(名).答:該鎮(zhèn)小學(xué)生中共有留守兒童1名.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。部疾榱似骄鶖?shù)、中位數(shù)和眾數(shù)以及用樣本估計(jì)總體.22、(1)2000;(2)28.8°;(3)補(bǔ)圖見(jiàn)解析;(4)36萬(wàn)人.【解析】分析:(1)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度xyz與pqr就智慧城市解決方案的合作合同
- 建筑工程施工補(bǔ)充合同
- 2024年度南京二手房買(mǎi)賣(mài)合同
- 2024店鋪商鋪?zhàn)赓U合同范本
- 合伙開(kāi)店合同:共同經(jīng)營(yíng)店鋪協(xié)議書(shū)樣本
- 承攬合同與雇傭合同的實(shí)質(zhì)區(qū)別
- 工程合同風(fēng)險(xiǎn)管理
- 專業(yè)勞務(wù)派遣合同協(xié)議
- 招商引資協(xié)議案例
- 2024年水電工承包合同范本
- 2024年江蘇南京市駐寧部隊(duì)軍人隨軍家屬(事業(yè)編制)定向招聘60人歷年公開(kāi)引進(jìn)高層次人才和急需緊缺人才筆試參考題庫(kù)(共500題)答案詳解版
- 2024入團(tuán)考試題庫(kù)含答案(完整版)
- 幼兒園可行性研究報(bào)告范文(8篇)
- 2024年遼寧工程技術(shù)大學(xué)馬克思主義基本原理概論(期末考試題+答案)0
- 數(shù)字經(jīng)濟(jì)職業(yè)生涯規(guī)劃
- 糖尿病藥物治療
- 部隊(duì)心理健康與預(yù)防
- 2024年醫(yī)療器械培訓(xùn)記錄
- 人力資源管理百年:演變與發(fā)展
- 材料成型工藝pdf
- 胃潰瘍伴出血的護(hù)理查房
評(píng)論
0/150
提交評(píng)論