2022-2023學年江蘇省蘇州吳中學區(qū)重點名校十校聯(lián)考最后數(shù)學試題含解析_第1頁
2022-2023學年江蘇省蘇州吳中學區(qū)重點名校十校聯(lián)考最后數(shù)學試題含解析_第2頁
2022-2023學年江蘇省蘇州吳中學區(qū)重點名校十校聯(lián)考最后數(shù)學試題含解析_第3頁
2022-2023學年江蘇省蘇州吳中學區(qū)重點名校十校聯(lián)考最后數(shù)學試題含解析_第4頁
2022-2023學年江蘇省蘇州吳中學區(qū)重點名校十校聯(lián)考最后數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在△ABC中,CD⊥AB于點D,E,F(xiàn)分別為AC,BC的中點,AB=10,BC=8,DE=4.5,則△DEF的周長是()A.9.5 B.13.5 C.14.5 D.172.如圖,矩形ABCD中,AB=3,AD=,將矩形ABCD繞點B按順時針方向旋轉后得到矩形EBGF,此時恰好四邊形AEHB為菱形,連接CH交FG于點M,則HM=()A. B.1 C. D.3.如圖,在直角坐標系xOy中,若拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點D位于直線y=﹣2與x軸之間的區(qū)域(不包括直線y=﹣2和x軸),則l與直線y=﹣1交點的個數(shù)是()A.0個 B.1個或2個C.0個、1個或2個 D.只有1個4.如圖,在平面直角坐標系中,矩形ABOC的兩邊在坐標軸上,OB=1,點A在函數(shù)y=﹣(x<0)的圖象上,將此矩形向右平移3個單位長度到A1B1O1C1的位置,此時點A1在函數(shù)y=(x>0)的圖象上,C1O1與此圖象交于點P,則點P的縱坐標是()A. B. C. D.5.不等式組的解集為.則的取值范圍為()A. B. C. D.6.-10-4的結果是()A.-7B.7C.-14D.137.如圖,是由一個圓柱體和一個長方體組成的幾何體,其主視圖是()A. B. C. D.8.點A(-1,y1),B(-2,y2)在反比例函數(shù)y=2x的圖象上,則A.y1>y2 B.y1=y2 C.9.小紅上學要經(jīng)過兩個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望上學時經(jīng)過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.10.的一個有理化因式是()A. B. C. D.11.如圖,將一張三角形紙片的一角折疊,使點落在處的處,折痕為.如果,,,那么下列式子中正確的是()A. B. C. D.12.將一副直角三角尺如圖放置,若∠AOD=20°,則∠BOC的大小為()A.140° B.160° C.170° D.150°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在平面直角坐標系xOy中,點A的坐標為A(1,0),等腰直角三角形ABC的邊AB在x軸的正半軸上,∠ABC=90°,點B在點A的右側,點C在第一象限。將△ABC繞點A逆時針旋轉75°,如果點C的對應點E恰好落在y軸的正半軸上,那么邊AB的長為____.14.在△ABC中,點D在邊BC上,BD=2CD,,,那么=.15.若關于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是______.16.若不等式組x<4x<m的解集是x<4,則m17.在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分線,DE交AB于點D,交AC于點E,連接BE.下列結論①BE平分∠ABC;②AE=BE=BC;③△BEC周長等于AC+BC;④E點是AC的中點.其中正確的結論有_____(填序號)18.在函數(shù)y=x-1的表達式中,自變量x的取值范圍是.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某區(qū)教育局為了解今年九年級學生體育測試情況,隨機抽查了某班學生的體育測試成績?yōu)闃颖?,按A、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制成如下的統(tǒng)計圖,請你結合圖中所給信息解答下列問題:說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下(1)樣本中D級的學生人數(shù)占全班學生人數(shù)的百分比是;(2)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)是;(3)請把條形統(tǒng)計圖補充完整;(4)若該校九年級有500名學生,請你用此樣本估計體育測試中A級和B級的學生人數(shù)之和.20.(6分)如圖,矩形ABCD中,點P是線段AD上一動點,O為BD的中點,PO的延長線交BC于Q.(1)求證:OP=OQ;(2)若AD=8厘米,AB=6厘米,P從點A出發(fā),以1厘米/秒的速度向D運動(不與D重合).設點P運動時間為t秒,請用t表示PD的長;并求t為何值時,四邊形PBQD是菱形.21.(6分)小新家、小華家和書店依次在東風大街同一側(忽略三者與東風大街的距離).小新小華兩人同時各自從家出發(fā)沿東風大街勻速步行到書店買書,已知小新到達書店用了20分鐘,小華的步行速度是40米/分,設小新、小華離小華家的距離分別為y1(米)、y2(米),兩人離家后步行的時間為x(分),y1與x的函數(shù)圖象如圖所示,根據(jù)圖象解決下列問題:(1)小新的速度為_____米/分,a=_____;并在圖中畫出y2與x的函數(shù)圖象(2)求小新路過小華家后,y1與x之間的函數(shù)關系式.(3)直接寫出兩人離小華家的距離相等時x的值.22.(8分)如圖,海中有一個小島A,該島四周11海里范圍內(nèi)有暗礁.有一貨輪在海面上由西向正東方向航行,到達B處時它在小島南偏西60°的方向上,再往正東方向行駛10海里后恰好到達小島南偏西45°方向上的點C處.問:如果貨輪繼續(xù)向正東方向航行,是否會有觸礁的危險?(參考數(shù)據(jù):≈1.41,≈1.73)23.(8分)如圖,在樓房AB和塔CD之間有一棵樹EF,從樓頂A處經(jīng)過樹頂E點恰好看到塔的底部D點,且俯角α為45°,從樓底B點1米的P點處經(jīng)過樹頂E點恰好看到塔的頂部C點,且仰角β為30°.已知樹高EF=6米,求塔CD的高度(結果保留根號).24.(10分)計算:×(2﹣)﹣÷+.25.(10分)如圖,AC是的直徑,點B是內(nèi)一點,且,連結BO并延長線交于點D,過點C作的切線CE,且BC平分.求證:;若的直徑長8,,求BE的長.26.(12分)如圖,在平面直角坐標系中,四邊形OABC為矩形,直線y=kx+b交BC于點E(1,m),交AB于點F(4,),反比例函數(shù)y=(x>0)的圖象經(jīng)過點E,F(xiàn).(1)求反比例函數(shù)及一次函數(shù)解析式;(2)點P是線段EF上一點,連接PO、PA,若△POA的面積等于△EBF的面積,求點P的坐標.27.(12分)如圖所示,AB是⊙O的一條弦,DB切⊙O于點B,過點D作DC⊥OA于點C,DC與AB相交于點E.(1)求證:DB=DE;(2)若∠BDE=70°,求∠AOB的大?。?/p>

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

由三角形中位線定理和直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】∵在△ABC中,CD⊥AB于點D,E,F(xiàn)分別為AC,BC的中點,∴DE=AC=4.1,DF=BC=4,EF=AB=1,∴△DEF的周長=(AB+BC+AC)=×(10+8+9)=13.1.故選B.【點睛】考查了三角形中位線定理和直角三角形斜邊上的中線,三角形的中位線平行于第三邊,且等于第三邊的一半.2、D【解析】

由旋轉的性質得到AB=BE,根據(jù)菱形的性質得到AE=AB,推出△ABE是等邊三角形,得到AB=3,AD=,根據(jù)三角函數(shù)的定義得到∠BAC=30°,求得AC⊥BE,推出C在對角線AH上,得到A,C,H共線,于是得到結論.【詳解】如圖,連接AC交BE于點O,∵將矩形ABCD繞點B按順時針方向旋轉后得到矩形EBGF,∴AB=BE,∵四邊形AEHB為菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等邊三角形,∵AB=3,AD=,∴tan∠CAB=,∴∠BAC=30°,∴AC⊥BE,∴C在對角線AH上,∴A,C,H共線,∴AO=OH=AB=,∵OC=BC=,∵∠COB=∠OBG=∠G=90°,∴四邊形OBGM是矩形,∴OM=BG=BC=,∴HM=OH﹣OM=,故選D.【點睛】本題考查了旋轉的性質,菱形的性質,等邊三角形的判定與性質,解直角三角形的應用等,熟練掌握和靈活運用相關的知識是解題的關鍵.3、C【解析】

根據(jù)題意,利用分類討論的數(shù)學思想可以得到l與直線y=﹣1交點的個數(shù),從而可以解答本題.【詳解】∵拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點D位于直線y=﹣2與x軸之間的區(qū)域,開口向下,∴當頂點D位于直線y=﹣1下方時,則l與直線y=﹣1交點個數(shù)為0,當頂點D位于直線y=﹣1上時,則l與直線y=﹣1交點個數(shù)為1,當頂點D位于直線y=﹣1上方時,則l與直線y=﹣1交點個數(shù)為2,故選C.【點睛】考查拋物線與x軸的交點、二次函數(shù)的性質,解答本題的關鍵是明確題意,利用函數(shù)的思想和分類討論的數(shù)學思想解答.4、C【解析】分析:先求出A點坐標,再根據(jù)圖形平移的性質得出A1點的坐標,故可得出反比例函數(shù)的解析式,把O1點的橫坐標代入即可得出結論.詳解:∵OB=1,AB⊥OB,點A在函數(shù)(x<0)的圖象上,∴當x=?1時,y=2,∴A(?1,2).∵此矩形向右平移3個單位長度到的位置,∴B1(2,0),∴A1(2,2).∵點A1在函數(shù)(x>0)的圖象上,∴k=4,∴反比例函數(shù)的解析式為,O1(3,0),∵C1O1⊥x軸,∴當x=3時,∴P故選C.點睛:考查反比例函數(shù)圖象上點的坐標特征,坐標與圖形變化-平移,解題的關鍵是運用雙曲線方程求出點A的坐標,利用平移的性質求出點A1的坐標.5、B【解析】

求出不等式組的解集,根據(jù)已知得出關于k的不等式,求出不等式的解集即可.【詳解】解:解不等式組,得.∵不等式組的解集為x<2,∴k+1≥2,解得k≥1.故選:B.【點睛】本題考查了解一元一次不等式組的應用,解此題的關鍵是能根據(jù)不等式組的解集和已知得出關于k的不等式,難度適中.6、C【解析】解:-10-4=-1.故選C.7、B【解析】試題分析:長方體的主視圖為矩形,圓柱的主視圖為矩形,根據(jù)立體圖形可得:主視圖的上面和下面各為一個矩形,且下面矩形的長比上面矩形的長要長一點,兩個矩形的寬一樣大小.考點:三視圖.8、C【解析】試題分析:對于反比例函數(shù)y=kx,當k>0時,在每一個象限內(nèi),y隨x的增大而減小,根據(jù)題意可得:-1>-2,則y考點:反比例函數(shù)的性質.9、C【解析】

列舉出所有情況,看每個路口都是綠燈的情況數(shù)占總情況數(shù)的多少即可得.【詳解】畫樹狀圖如下,共4種情況,有1種情況每個路口都是綠燈,所以概率為.故選C.10、B【解析】

找出原式的一個有理化因式即可.【詳解】的一個有理化因式是,故選B.【點睛】此題考查了分母有理化,熟練掌握有理化因式的取法是解本題的關鍵.11、A【解析】

分析:根據(jù)三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得結論.詳解:由折疊得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故選A.點睛:本題考查了三角形外角的性質,熟練掌握三角形的外角等于與它不相鄰的兩個內(nèi)角的和是關鍵.12、B【解析】試題分析:根據(jù)∠AOD=20°可得:∠AOC=70°,根據(jù)題意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考點:角度的計算二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

依據(jù)旋轉的性質,即可得到,再根據(jù),,即可得出,.最后在中,可得到.【詳解】依題可知,,,,∴,在中,,,,,.∴在中,.故答案為:.【點睛】本題考查了坐標與圖形變化,等腰直角三角形的性質以及含30°角的直角三角形的綜合運用,圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質來求出旋轉后的點的坐標.14、【解析】

首先利用平行四邊形法則,求得的值,再由BD=2CD,求得的值,即可求得的值.【詳解】∵,,∴=-=-,∵BD=2CD,∴==,∴=+==.故答案為.15、k<5且k≠1.【解析】試題解析:∵關于x的一元二次方程有兩個不相等的實數(shù)根,解得:且故答案為且16、m≥1.【解析】∵不等式組x<4x<m的解集是x∴m≥1,故答案為m≥1.17、①②③【解析】試題分析:根據(jù)三角形內(nèi)角和定理求出∠ABC、∠C的度數(shù),根據(jù)線段垂直平分線的性質得到EA=EB,根據(jù)等腰三角形的判定定理和三角形的周長公式計算即可.解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵DE是AB的垂直平分線,∴EA=EB,∴∠EBA=∠A=36°,∴∠EBC=36°,∴∠EBA=∠EBC,∴BE平分∠ABC,①正確;∠BEC=∠EBA+∠A=72°,∴∠BEC=∠C,∴BE=BC,∴AE=BE=BC,②正確;△BEC周長=BC+CE+BE=BC+CE+EA=AC+BC,③正確;∵BE>EC,AE=BE,∴AE>EC,∴點E不是AC的中點,④錯誤,故答案為①②③.考點:線段垂直平分線的性質;等腰三角形的判定與性質.18、x≥1.【解析】

根據(jù)被開方數(shù)大于等于0列式計算即可得解.【詳解】根據(jù)題意得,x﹣1≥0,解得x≥1.故答案為x≥1.【點睛】本題考查函數(shù)自變量的取值范圍,知識點為:二次根式的被開方數(shù)是非負數(shù).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)10%;(2)72;(3)5,見解析;(4)330.【解析】

解:(1)根據(jù)題意得:

D級的學生人數(shù)占全班人數(shù)的百分比是:

1-20%-46%-24%=10%;

(2)A級所在的扇形的圓心角度數(shù)是:20%×360°=72°;

(3)∵A等人數(shù)為10人,所占比例為20%,

∴抽查的學生數(shù)=10÷20%=50(人),

∴D級的學生人數(shù)是50×10%=5(人),

補圖如下:

(4)根據(jù)題意得:

體育測試中A級和B級的學生人數(shù)之和是:500×(20%+46%)=330(名),

答:體育測試中A級和B級的學生人數(shù)之和是330名.【點睛】本題考查統(tǒng)計的知識,要求考生會識別條形統(tǒng)計圖和扇形統(tǒng)計圖.20、(1)證明見解析(2)74【解析】試題分析:(1)先根據(jù)四邊形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根據(jù)O為BD的中點得出△POD≌△QOB,即可證得OP=OQ;(2)根據(jù)已知條件得出∠A的度數(shù),再根據(jù)AD=8cm,AB=6cm,得出BD和OD的長,再根據(jù)四邊形PBQD是菱形時,利用勾股定理即可求出t的值,判斷出四邊形PBQD是菱形.試題解析:(1)證明:因為四邊形ABCD是矩形,所以AD∥BC,所以∠PDO=∠QBO,又因為O為BD的中點,所以OB=OD,在△POD與△QOB中,∠PDO=∠QBO,OB=OD,∠POD=∠QOB,所以△POD≌△QOB,所以OP=OQ.(2)解:PD=8-t,因為四邊形PBQD是菱形,所以PD=BP=8-t,因為四邊形ABCD是矩形,所以∠A=90°,在Rt△ABP中,由勾股定理得:AB即62解得:t=74即運動時間為74考點:矩形的性質;菱形的性質;全等三角形的判斷和性質勾股定理.21、(1)60;960;圖見解析;(2)y1=60x﹣240(4≤x≤20);(3)兩人離小華家的距離相等時,x的值為2.4或12.【解析】

(1)先根據(jù)小新到小華家的時間和距離即可求得小新的速度和小華家離書店的距離,然后根據(jù)小華的速度即可畫出y2與x的函數(shù)圖象;(2)設所求函數(shù)關系式為y1=kx+b,由圖可知函數(shù)圖像過點(4,0),(20,960),則將兩點坐標代入求解即可得到函數(shù)關系式;(3)分小新還沒到小華家和小新過了小華家兩種情況,然后分別求出x的值即可.【詳解】(1)由圖可知,小新離小華家240米,用4分鐘到達,則速度為240÷4=60米/分,小新按此速度再走16分鐘到達書店,則a=16×60=960米,小華到書店的時間為960÷40=24分鐘,則y2與x的函數(shù)圖象為:故小新的速度為60米/分,a=960;(2)當4≤x≤20時,設所求函數(shù)關系式為y1=kx+b(k≠0),將點(4,0),(20,960)代入得:,解得:,∴y1=60x﹣240(4≤x≤20時)(3)由圖可知,小新到小華家之前的函數(shù)關系式為:y=240﹣6x,①當兩人分別在小華家兩側時,若兩人到小華家距離相同,則240﹣6x=40x,解得:x=2.4;②當小新經(jīng)過小華家并追上小華時,兩人到小華家距離相同,則60x﹣240=40x,解得:x=12;故兩人離小華家的距離相等時,x的值為2.4或12.22、不會有觸礁的危險,理由見解析.【解析】分析:作AH⊥BC,由∠CAH=45°,可設AH=CH=x,根據(jù)可得關于x的方程,解之可得.詳解:過點A作AH⊥BC,垂足為點H.由題意,得∠BAH=60°,∠CAH=45°,BC=1.設AH=x,則CH=x.在Rt△ABH中,∵,解得:.∵13.65>11,∴貨輪繼續(xù)向正東方向航行,不會有觸礁的危險.點睛:本題考查了解直角三角形的應用﹣方向角問題,解一般三角形的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.23、(6+2)米【解析】

根據(jù)題意求出∠BAD=∠ADB=45°,進而根據(jù)等腰直角三角形的性質求得FD,在Rt△PEH中,利用特殊角的三角函數(shù)值分別求出BF,即可求得PG,在Rt△PCG中,繼而可求出CG的長度.【詳解】由題意可知∠BAD=∠ADB=45°,∴FD=EF=6米,在Rt△PEH中,∵tanβ==,∴BF==5,∴PG=BD=BF+FD=5+6,∵tanβ=,∴CG=(5+6)·=5+2,∴CD=(6+2)米.【點睛】本題考查了解直角三角形的應用,解答本題的關鍵是構造直角三角形,利用三角函數(shù)的知識求解相關線段的長度.24、5-【解析】分析:先化簡各二次根式,再根據(jù)混合運算順序依次計算可得.詳解:原式=3×(2-)-+=6--+=5-點睛:本題考查了二次根式的混合運算,熟練掌握混合運算的法則是解題的關鍵.25、(1)證明見解析;(2).【解析】

先利用等腰三角形的性質得到,利用切線的性質得,則CE∥BD,然后證明得到BE=CE;作于F,如圖,在Rt△OBC中利用正弦定義得到BC=5,所以,然后在Rt

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論