2022-2023學(xué)年江蘇省鎮(zhèn)江市聯(lián)考中考數(shù)學(xué)四模試卷含解析_第1頁(yè)
2022-2023學(xué)年江蘇省鎮(zhèn)江市聯(lián)考中考數(shù)學(xué)四模試卷含解析_第2頁(yè)
2022-2023學(xué)年江蘇省鎮(zhèn)江市聯(lián)考中考數(shù)學(xué)四模試卷含解析_第3頁(yè)
2022-2023學(xué)年江蘇省鎮(zhèn)江市聯(lián)考中考數(shù)學(xué)四模試卷含解析_第4頁(yè)
2022-2023學(xué)年江蘇省鎮(zhèn)江市聯(lián)考中考數(shù)學(xué)四模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.平面直角坐標(biāo)系中,若點(diǎn)A(a,﹣b)在第三象限內(nèi),則點(diǎn)B(b,a)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如圖是小明在物理實(shí)驗(yàn)課上用量筒和水測(cè)量鐵塊A的體積實(shí)驗(yàn),小明在勻速向上將鐵塊提起,直至鐵塊完全露出水面一定高度的過(guò)程中,則下圖能反映液面高度h與鐵塊被提起的時(shí)間t之間的函數(shù)關(guān)系的大致圖象是()A. B. C. D.3.如圖,在中,分別在邊邊上,已知,則的值為()A. B. C. D.4.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積是()A.24+2π B.16+4π C.16+8π D.16+12π5.方程的解是().A. B. C. D.6.在銀行存款準(zhǔn)備金不變的情況下,銀行的可貸款總量與存款準(zhǔn)備金率成反比例關(guān)系.當(dāng)存款準(zhǔn)備金率為7.5%時(shí),某銀行可貸款總量為400億元,如果存款準(zhǔn)備金率上調(diào)到8%時(shí),該銀行可貸款總量將減少多少億()A.20 B.25 C.30 D.357.在△ABC中,點(diǎn)D、E分別在邊AB、AC上,如果AD=1,BD=3,那么由下列條件能夠判斷DE∥BC的是()A. B. C. D.8.如圖,將RtABC繞直角項(xiàng)點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到A'B'C,連接AA',若∠1=20°,則∠B的度數(shù)是()A.70° B.65° C.60° D.55°9.下面四個(gè)幾何體中,左視圖是四邊形的幾何體共有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)10.碳納米管的硬度與金剛石相當(dāng),卻擁有良好的柔韌性,可以拉伸,我國(guó)某物理所研究組已研制出直徑為0.5納米的碳納米管,1納米=0.000000001米,則0.5納米用科學(xué)記數(shù)法表示為()A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,在中,,點(diǎn)D、E分別在邊、上,且,如果,,那么________.12.在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中隨機(jī)抽取一張,抽到中心對(duì)稱圖形的概率是________.13.若關(guān)于的一元二次方程無(wú)實(shí)數(shù)根,則一次函數(shù)的圖象不經(jīng)過(guò)第_________象限.14.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.15.某風(fēng)扇在網(wǎng)上累計(jì)銷(xiāo)量約1570000臺(tái),請(qǐng)將1570000用科學(xué)記數(shù)法表示為_(kāi)____.16.將161000用科學(xué)記數(shù)法表示為1.61×10n,則n的值為_(kāi)_______.三、解答題(共8題,共72分)17.(8分)在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)角a(0°<a<90°)得到△A1BC;A1B交AC于點(diǎn)E,A1C1分別交AC、BC于D、F兩點(diǎn).(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過(guò)程中,線段BE與BF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.(2)如圖2,當(dāng)a=30°時(shí),試判斷四邊形BC1DA的形狀,并證明.(3)在(2)的條件下,求線段DE的長(zhǎng)度.18.(8分)一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為.(1)求口袋中黃球的個(gè)數(shù);(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹(shù)狀圖法”或“列表法”,求兩次摸出都是紅球的概率;19.(8分)如圖,拋物線(a≠0)交x軸于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點(diǎn)G.求拋物線的解析式;拋物線的對(duì)稱軸l在邊OA(不包括O、A兩點(diǎn))上平行移動(dòng),分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示PM的長(zhǎng);在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似?若存在,求出此時(shí)m的值,并直接判斷△PCM的形狀;若不存在,請(qǐng)說(shuō)明理由.20.(8分)甲、乙兩地相距300千米,一輛貨車(chē)和一輛轎車(chē)先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車(chē)離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系;折線OBCDA表示轎車(chē)離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象解答下列問(wèn)題:當(dāng)轎車(chē)剛到乙地時(shí),此時(shí)貨車(chē)距離乙地千米;當(dāng)轎車(chē)與貨車(chē)相遇時(shí),求此時(shí)x的值;在兩車(chē)行駛過(guò)程中,當(dāng)轎車(chē)與貨車(chē)相距20千米時(shí),求x的值.21.(8分)某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對(duì)學(xué)生每周的課外閱讀時(shí)間x(單位:小時(shí))進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計(jì)圖:根據(jù)圖中提供的信息,解答下列問(wèn)題:(1)補(bǔ)全頻數(shù)分布直方圖(2)求扇形統(tǒng)計(jì)圖中m的值和E組對(duì)應(yīng)的圓心角度數(shù)(3)請(qǐng)估計(jì)該校3000名學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù)22.(10分)如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC的長(zhǎng)為0.60m,底座BC與支架AC所成的角∠ACB=75°,點(diǎn)A、H、F在同一條直線上,支架AH段的長(zhǎng)為1m,HF段的長(zhǎng)為1.50m,籃板底部支架HE的長(zhǎng)為0.75m.求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).求籃板頂端F到地面的距離.(結(jié)果精確到0.1m;參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)23.(12分)如圖,在10×10的網(wǎng)格中,每個(gè)小方格都是邊長(zhǎng)為1的小正方形,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).如果拋物線經(jīng)過(guò)圖中的三個(gè)格點(diǎn),那么以這三個(gè)格點(diǎn)為頂點(diǎn)的三角形稱為該拋物線的“內(nèi)接格點(diǎn)三角形”.設(shè)對(duì)稱軸平行于y軸的拋物線與網(wǎng)格對(duì)角線OM的兩個(gè)交點(diǎn)為A,B,其頂點(diǎn)為C,如果△ABC是該拋物線的內(nèi)接格點(diǎn)三角形,AB=3,且點(diǎn)A,B,C的橫坐標(biāo)xA,xB,xC滿足xA<xC<xB,那么符合上述條件的拋物線條數(shù)是()A.7 B.8 C.14 D.1624.如圖,AB是⊙O的直徑,,連結(jié)AC,過(guò)點(diǎn)C作直線l∥AB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.求∠BAC的度數(shù);當(dāng)點(diǎn)D在AB上方,且CD⊥BP時(shí),求證:PC=AC;在點(diǎn)P的運(yùn)動(dòng)過(guò)程中①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫(xiě)出△BDE的面積.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:根據(jù)題意得出a和b的正負(fù)性,從而得出點(diǎn)B所在的象限.詳解:∵點(diǎn)A在第三象限,∴a<0,-b<0,即a<0,b>0,∴點(diǎn)B在第四象限,故選D.點(diǎn)睛:本題主要考查的是象限中點(diǎn)的坐標(biāo)特點(diǎn),屬于基礎(chǔ)題型.明確各象限中點(diǎn)的橫縱坐標(biāo)的正負(fù)性是解題的關(guān)鍵.2、B【解析】根據(jù)題意,在實(shí)驗(yàn)中有3個(gè)階段,①、鐵塊在液面以下,液面得高度不變;②、鐵塊的一部分露出液面,但未完全露出時(shí),液面高度降低;③、鐵塊在液面以上,完全露出時(shí),液面高度又維持不變;分析可得,B符合描述;故選B.3、B【解析】

根據(jù)DE∥BC得到△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)解答.【詳解】解:∵,

∴,

∵DE∥BC,

∴△ADE∽△ABC,

∴,

故選:B.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì),掌握相似三角形的對(duì)應(yīng)邊的比等于相似比是解題的關(guān)鍵.4、D【解析】

根據(jù)三視圖知該幾何體是一個(gè)半徑為2、高為4的圓柱體的縱向一半,據(jù)此求解可得.【詳解】該幾何體的表面積為2×?π?22+4×4+×2π?2×4=12π+16,故選:D.【點(diǎn)睛】本題主要考查由三視圖判斷幾何體,解題的關(guān)鍵是根據(jù)三視圖得出幾何體的形狀及圓柱體的有關(guān)計(jì)算.5、B【解析】

直接解分式方程,注意要驗(yàn)根.【詳解】解:=0,方程兩邊同時(shí)乘以最簡(jiǎn)公分母x(x+1),得:3(x+1)-7x=0,解這個(gè)一元一次方程,得:x=,經(jīng)檢驗(yàn),x=是原方程的解.故選B.【點(diǎn)睛】本題考查了解分式方程,解分式方程不要忘記驗(yàn)根.6、B【解析】設(shè)可貸款總量為y,存款準(zhǔn)備金率為x,比例常數(shù)為k,則由題意可得:,,∴,∴當(dāng)時(shí),(億),∵400-375=25,∴該行可貸款總量減少了25億.故選B.7、D【解析】

如圖,∵AD=1,BD=3,∴,當(dāng)時(shí),,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根據(jù)選項(xiàng)A、B、C的條件都不能推出DE∥BC,故選D.8、B【解析】

根據(jù)圖形旋轉(zhuǎn)的性質(zhì)得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,從而得∠AA′C=45°,結(jié)合∠1=20°,即可求解.【詳解】∵將RtABC繞直角項(xiàng)點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故選B.【點(diǎn)睛】本題主要考查旋轉(zhuǎn)的性質(zhì),等腰三角形和直角三角形的性質(zhì),掌握等腰三角形和直角三角形的性質(zhì)定理,是解題的關(guān)鍵.9、B【解析】簡(jiǎn)單幾何體的三視圖.【分析】左視圖是從左邊看到的圖形,因?yàn)閳A柱的左視圖是矩形,圓錐的左視圖是等腰三角形,球的左視圖是圓,正方體的左視圖是正方形,所以,左視圖是四邊形的幾何體是圓柱和正方體2個(gè).故選B.10、D【解析】解:0.5納米=0.5×0.000000001米=0.0000000005米=5×10﹣10米.故選D.點(diǎn)睛:在負(fù)指數(shù)科學(xué)計(jì)數(shù)法中,其中,n等于第一個(gè)非0數(shù)字前所有0的個(gè)數(shù)(包括下數(shù)點(diǎn)前面的0).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

根據(jù),,得出,利用相似三角形的性質(zhì)解答即可.【詳解】∵,,∴,∴,即,∴,∵,∴,故答案為:【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì).關(guān)鍵是要懂得找相似三角形,利用相似三角形的性質(zhì)求解.12、【解析】

在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中,中心對(duì)稱圖案的卡片是圓、矩形、菱形,直接利用概率公式求解即可求得答案.【詳解】∵在:等腰三角形、圓、矩形、菱形和直角梯形中屬于中心對(duì)稱圖形的有:圓、矩形和菱形3種,∴從這5張紙片中隨機(jī)抽取一張,抽到中心對(duì)稱圖形的概率為:.故答案為.13、一【解析】

根據(jù)一元二次方程的定義和判別式的意義得到m≠0且△=(-2)2-4m×(-1)<0,所以m<-1,然后根據(jù)一次函數(shù)的性質(zhì)判斷一次函數(shù)y=mx+m的圖象所在的象限即可.【詳解】∵關(guān)于x的一元二次方程mx2-2x-1=0無(wú)實(shí)數(shù)根,∴m≠0且△=(-2)2-4m×(-1)<0,∴m<-1,∴一次函數(shù)y=mx+m的圖象經(jīng)過(guò)第二、三、四象限,不經(jīng)過(guò)第一象限.故答案為一.【點(diǎn)睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0時(shí),方程無(wú)實(shí)數(shù)根.也考查了一次函數(shù)的性質(zhì).14、【解析】

連接BD,易證△DAB是等邊三角形,即可求得△ABD的高為,再證明△ABG≌△DBH,即可得四邊形GBHD的面積等于△ABD的面積,由圖中陰影部分的面積為S扇形EBF﹣S△ABD即可求解.【詳解】如圖,連接BD.∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設(shè)AD、BE相交于點(diǎn)G,設(shè)BF、DC相交于點(diǎn)H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF﹣S△ABD=﹣×2×=.故答案是:.【點(diǎn)睛】本題考查了扇形的面積計(jì)算以及全等三角形的判定與性質(zhì)等知識(shí),根據(jù)已知得出四邊形GBHD的面積等于△ABD的面積是解題關(guān)鍵.15、1.57×1【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】將1570000用科學(xué)記數(shù)法表示為1.57×1.故答案為1.57×1.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.16、5【解析】

【科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】∵161000=1.61×105.∴n=5.故答案為5.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.三、解答題(共8題,共72分)17、(1)(2)四邊形是菱形.(3)【解析】

(1)根據(jù)等邊對(duì)等角及旋轉(zhuǎn)的特征可得即可證得結(jié)論;

(2)先根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形,再得到鄰邊相等即可判斷結(jié)論;

(3)過(guò)點(diǎn)E作于點(diǎn)G,解可得AE的長(zhǎng),結(jié)合菱形的性質(zhì)即可求得結(jié)果.【詳解】(1)證明:(證法一)由旋轉(zhuǎn)可知,∴∴又∴即(證法二)由旋轉(zhuǎn)可知,而∴∴∴即(2)四邊形是菱形.證明:同理∴四邊形是平行四邊形.又∴四邊形是菱形(3)過(guò)點(diǎn)作于點(diǎn),則在中,.由(2)知四邊形是菱形,∴∴【點(diǎn)睛】解答本題的關(guān)鍵是掌握好旋轉(zhuǎn)的性質(zhì),平行四邊形判定與性質(zhì),的菱形的判定與性質(zhì),選擇適當(dāng)?shù)臈l件解決問(wèn)題.18、(1)1;(2)【解析】

(1)設(shè)口袋中黃球的個(gè)數(shù)為x個(gè),根據(jù)從中任意摸出一個(gè)球是紅球的概率為和概率公式列出方程,解方程即可求得答案;(2)根據(jù)題意畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與兩次摸出都是紅球的情況,再利用概率公式即可求得答案;【詳解】解:(1)設(shè)口袋中黃球的個(gè)數(shù)為個(gè),根據(jù)題意得:解得:=1經(jīng)檢驗(yàn):=1是原分式方程的解∴口袋中黃球的個(gè)數(shù)為1個(gè)(2)畫(huà)樹(shù)狀圖得:∵共有12種等可能的結(jié)果,兩次摸出都是紅球的有2種情況∴兩次摸出都是紅球的概率為:.【點(diǎn)睛】本題考查的是用列表法或畫(huà)樹(shù)狀圖法求概率.列表法或畫(huà)樹(shù)狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹(shù)狀圖法適合兩步或兩步以上完成的事件.19、(1)拋物線的解析式為;(2)PM=(0<m<3);(3)存在這樣的點(diǎn)P使△PFC與△AEM相似.此時(shí)m的值為或1,△PCM為直角三角形或等腰三角形.【解析】

(1)將A(3,0),C(0,4)代入,運(yùn)用待定系數(shù)法即可求出拋物線的解析式.(2)先根據(jù)A、C的坐標(biāo),用待定系數(shù)法求出直線AC的解析式,從而根據(jù)拋物線和直線AC的解析式分別表示出點(diǎn)P、點(diǎn)M的坐標(biāo),即可得到PM的長(zhǎng).(3)由于∠PFC和∠AEM都是直角,F(xiàn)和E對(duì)應(yīng),則若以P、C、F為頂點(diǎn)的三角形和△AEM相似時(shí),分兩種情況進(jìn)行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長(zhǎng),根據(jù)相似三角形對(duì)應(yīng)邊的比相等列出比例式,求出m的值,再根據(jù)相似三角形的性質(zhì),直角三角形、等腰三角形的判定判斷出△PCM的形狀.【詳解】解:(1)∵拋物線(a≠0)經(jīng)過(guò)點(diǎn)A(3,0),點(diǎn)C(0,4),∴,解得.∴拋物線的解析式為.(2)設(shè)直線AC的解析式為y=kx+b,∵A(3,0),點(diǎn)C(0,4),∴,解得.∴直線AC的解析式為.∵點(diǎn)M的橫坐標(biāo)為m,點(diǎn)M在AC上,∴M點(diǎn)的坐標(biāo)為(m,).∵點(diǎn)P的橫坐標(biāo)為m,點(diǎn)P在拋物線上,∴點(diǎn)P的坐標(biāo)為(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的條件下,連接PC,在CD上方的拋物線部分存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似.理由如下:由題意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F為頂點(diǎn)的三角形和△AEM相似,分兩種情況:①若△PFC∽△AEM,則PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM為直角三角形.②若△CFP∽△AEM,則CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM為等腰三角形.綜上所述,存在這樣的點(diǎn)P使△PFC與△AEM相似.此時(shí)m的值為或1,△PCM為直角三角形或等腰三角形.20、(1)30;(2)當(dāng)x=3.9時(shí),轎車(chē)與貨車(chē)相遇;(3)在兩車(chē)行駛過(guò)程中,當(dāng)轎車(chē)與貨車(chē)相距20千米時(shí),x的值為3.5或4.3小時(shí).【解析】

(1)根據(jù)圖象可知貨車(chē)5小時(shí)行駛300千米,由此求出貨車(chē)的速度為60千米/時(shí),再根據(jù)圖象得出貨車(chē)出發(fā)后4.5小時(shí)轎車(chē)到達(dá)乙地,由此求出轎車(chē)到達(dá)乙地時(shí),貨車(chē)行駛的路程為270千米,而甲、乙兩地相距300千米,則此時(shí)貨車(chē)距乙地的路程為:300﹣270=30千米;(2)先求出線段CD對(duì)應(yīng)的函數(shù)關(guān)系式,再根據(jù)兩直線的交點(diǎn)即可解答;(3)分兩種情形列出方程即可解決問(wèn)題.【詳解】解:(1)根據(jù)圖象信息:貨車(chē)的速度V貨=,∵轎車(chē)到達(dá)乙地的時(shí)間為貨車(chē)出發(fā)后4.5小時(shí),∴轎車(chē)到達(dá)乙地時(shí),貨車(chē)行駛的路程為:4.5×60=270(千米),此時(shí),貨車(chē)距乙地的路程為:300﹣270=30(千米).所以轎車(chē)到達(dá)乙地后,貨車(chē)距乙地30千米.故答案為30;(2)設(shè)CD段函數(shù)解析式為y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其圖象上,,解得,∴CD段函數(shù)解析式:y=110x﹣195(2.5≤x≤4.5);易得OA:y=60x,,解得,∴當(dāng)x=3.9時(shí),轎車(chē)與貨車(chē)相遇;(3)當(dāng)x=2.5時(shí),y貨=150,兩車(chē)相距=150﹣80=70>20,由題意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,解得x=3.5或4.3小時(shí).答:在兩車(chē)行駛過(guò)程中,當(dāng)轎車(chē)與貨車(chē)相距20千米時(shí),x的值為3.5或4.3小時(shí).【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用,對(duì)一次函數(shù)圖象的意義的理解,待定系數(shù)法求一次函數(shù)的解析式的運(yùn)用,行程問(wèn)題中路程=速度×?xí)r間的運(yùn)用,本題有一定難度,其中求出貨車(chē)與轎車(chē)的速度是解題的關(guān)鍵.21、略;m=40,1.4°;870人.【解析】試題分析:根據(jù)A組的人數(shù)和比例得出總?cè)藬?shù),然后得出D組的人數(shù),補(bǔ)全條形統(tǒng)計(jì)圖;根據(jù)C組的人數(shù)和總?cè)藬?shù)得出m的值,根據(jù)E組的人數(shù)求出E的百分比,然后計(jì)算圓心角的度數(shù);根據(jù)D組合E組的百分?jǐn)?shù)總和,估算出該校的每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù).試題解析:(1)補(bǔ)全頻數(shù)分布直方圖,如圖所示.(2)∵10÷10%=100∴40÷100=40%∴m=40∵4÷100=4%∴“E”組對(duì)應(yīng)的圓心角度數(shù)=4%×360°=1.4°(3)3000×(25%+4%)=870(人).答:估計(jì)該校學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù)是870人.考點(diǎn):統(tǒng)計(jì)圖.22、(1)∠FHE=60°;(2)籃板頂端F到地面的距離是4.4米.【解析】

(1)直接利用銳角三角函數(shù)關(guān)系得出cos∠FHE=,進(jìn)而得出答案;(2)延長(zhǎng)FE交CB的延長(zhǎng)線于M,過(guò)A作AG⊥FM于G,解直角三角形即可得到結(jié)論.【詳解】(1)由題意可得:cos∠FHE=,則∠FHE=60°;(2)延長(zhǎng)FE交CB的延長(zhǎng)線于M,過(guò)A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:籃板頂端F到地面的距離是4.4米.【點(diǎn)睛】本題考查解直角三角形、銳角三角函數(shù)、解題的關(guān)鍵是添加輔助線,構(gòu)造直角三角形,記住銳角三角函數(shù)的定義.23、C【解析】

根據(jù)在OB上的兩個(gè)交點(diǎn)之間的距離為3,可知兩交點(diǎn)的橫坐標(biāo)的差為3,然后作出最左邊開(kāi)口向下的拋物線,再向右平移1個(gè)單位,向上平移1個(gè)單位得到開(kāi)口向下的拋物線的條數(shù),同理可得開(kāi)口向上的拋物線的條數(shù),然后相加即可得解.【詳解】解:如圖,開(kāi)口向下,經(jīng)過(guò)點(diǎn)(0,0),(1,3),(3,3)的拋物線的解析式為y=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論