版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第7章拉伸和壓縮§7-2橫截面上的應(yīng)力§7-3拉壓桿的強(qiáng)度計(jì)算§7-4斜截面上的應(yīng)力§7-5拉(壓)桿的變形與位移§7-6拉(壓)桿的應(yīng)變能§7-1軸力和軸力圖§7-7低碳鋼和鑄鐵受拉伸和壓縮時(shí)的力學(xué)性能§7-8簡(jiǎn)單的拉、壓超靜定問(wèn)題§7-9拉(壓)桿接頭的計(jì)算工程中有很多構(gòu)件,例如屋架中的桿,是等直桿,作用于桿上的外力的合力的作用線與桿的軸線重合。在這種受力情況下,桿的主要變形形式是軸向伸長(zhǎng)或縮短。
圖7-1屋架結(jié)構(gòu)的簡(jiǎn)化§7-1軸力和軸力圖如上圖中軸向受力的桿件常稱為拉伸或壓縮桿件,簡(jiǎn)稱拉壓桿。(b)CDF2F2(a)F1F1ABFFABmmFFNFNFAB拉壓桿橫截面上的內(nèi)力,由截面一邊分離體的平衡條件可知,是與橫截面垂直的力,此力稱為軸力。用符號(hào)FN表示。FFABmmFFNFNFAB習(xí)慣上,把對(duì)應(yīng)于伸長(zhǎng)變形的軸力規(guī)定為正值(即分離體上的軸力其指向離開截面),對(duì)應(yīng)于壓縮變形的軸力為負(fù)值(軸力的指向?qū)χ孛妫?。?dāng)桿件軸向受力較復(fù)雜時(shí),則常要作軸力圖,將軸力隨橫截面位置變化的情況表示出來(lái)。解:要作ABCD桿的軸力圖,則需分別將AB、BC、CD桿的軸力求出來(lái)。分別作截面1-1、2-2、3-3,如左圖所示。320kNFN1DC20kN20kNFN2D作軸力圖。20kN20kN30kNABCD1-1截面處將桿截開并取右段為分離體,并設(shè)其軸力為正。則∑Fx=0,-FN1-20=0FN320kN20kN30kNDCBOx例題7-12120kN20kN30kNACD123B負(fù)號(hào)表示軸力的實(shí)際指向與所設(shè)指向相反,即為壓力。FN1=-20kN120kN20kN30kNABCD1223320kNFN1D120kN20kN30kNABCD12233C20kN20kNFN2D于2-2截面處將桿截開并取右段為分離體,軸力為正值。則∑Fx=0,-FN2+20-20=0例題7-1FN2=0120kN20kN30kNABCD12233C20kN20kNFN2D120kN20kN30kNABCD12233FN320kN20kN30kNDCBO于3-3截面處將桿截開,取右段為分離體,設(shè)軸力為正值。則∑Fx=0,-FN3+30+20-20=0FN3=30kN軸力與實(shí)際指向相同。例題7-1作軸力圖,以沿桿件軸線的x坐標(biāo)表示橫截面的位置,以與桿件軸線垂直的縱坐標(biāo)表示橫截面上的軸力FN。20kN20kN30kN.ABCDFN/kNx3020O例題7-1當(dāng)然此題也可以先求A處的支座反力,再?gòu)淖筮呴_始將桿截開,并取左段為分離體進(jìn)行分析。120kN20kN30kNABCD12233例題7-1試作圖示桿的軸力圖。思考題7-1ABCD20kN40kN30kN0.5m0.5m1m思考題7-1參考答案:OxFN/kN202010ABCD20kN40kN30kN0.5m0.5m1m考慮圖示桿的自重,作其軸力圖。已知桿的橫截面面積為A,材料容重為g,桿的自重為P。FlAB思考題7-2思考題7-2參考答案:FlABxFAgxFN(x)FN(x)=F+AgxFNxFF+Ag
x§7-2橫截面上的應(yīng)力在上一節(jié)中已討論過(guò)軸向拉伸、壓縮桿件橫截面上的內(nèi)力——軸力FN。顯然,它是橫截面上法向分布內(nèi)力的合力。圖7-2要判斷一根桿件是否會(huì)因強(qiáng)度不足而破壞,還必須聯(lián)系桿件橫截面的幾何尺寸、分布內(nèi)力的變化規(guī)律找出分布內(nèi)力在各點(diǎn)處的集度——應(yīng)力。桿件橫截面上一點(diǎn)處法向分布內(nèi)力的集度稱為正應(yīng)力,以符號(hào)s
表示。定義:法向分布內(nèi)力的集度—
mm截面C點(diǎn)處的正應(yīng)力s
為:mmC(7-1)
是矢量,因而正應(yīng)力s也是矢量,其方向垂直于它所在的截面。正應(yīng)力的量綱為。在國(guó)際單位制中,應(yīng)力的單位為帕斯卡(Pascal),其中文代號(hào)是帕,國(guó)際代號(hào)是Pa。mmC由于應(yīng)力在截面上的變化規(guī)律還不知道,所以無(wú)法求出。解決此問(wèn)題的常用方法是,以桿件在受力變形后表面上的變形情況為根據(jù),由表及里地作出內(nèi)部變形情況的幾何假設(shè),再根據(jù)分布內(nèi)力與變形間的物性關(guān)系,得到應(yīng)力在截面上的變化規(guī)律,然后再通過(guò)靜力學(xué)中求合力的概念得到以內(nèi)力表示應(yīng)力的公式。圖7-2(a)AB受力前受力后(b)FF在桿受軸向拉伸時(shí),兩橫向周線雖然相對(duì)平移,但每一條周線仍位于一個(gè)平面內(nèi)。(a)AB受力前圖7-2受力后(b)FF平面假設(shè):原為平面的橫截面A和B,在桿變形后仍為平面,且仍與桿的軸線垂直。這意味著桿件受軸向拉伸時(shí)兩橫截面之間的所有縱向線段其絕對(duì)伸長(zhǎng)相同,伸長(zhǎng)變形的程度也相等。受力后(b)FF在工程上常假設(shè)材料是均勻的,而且是連續(xù)的。于是根據(jù)拉桿的變形情況,可以推斷,橫截面上各點(diǎn)處的正應(yīng)力處處相等。按靜力學(xué)求合力的概念可知:(b)FFF(7-2)式中,F(xiàn)N
為軸力,A
為橫截面面積。對(duì)于軸向壓縮的桿件,如果它具有足夠的抵抗彎曲的剛度,上式同樣適用。對(duì)應(yīng)于伸長(zhǎng)變形的拉應(yīng)力為正,對(duì)應(yīng)于縮短變形的壓應(yīng)力為負(fù)。外力作用于桿端的方式(例如,外力作用在桿件端面的局部或者整個(gè)端面),只會(huì)影響外力作用處附近橫截面上的應(yīng)力分布情況,而影響范圍不大于桿的橫向尺寸。注意公式(7-2)只在桿上離外力作用點(diǎn)稍遠(yuǎn)的部分才正確,而在外力作用點(diǎn)附近的應(yīng)力情況比較復(fù)雜。圣維南原理:當(dāng)桿受幾個(gè)軸向外力作用時(shí),從截面法可求得其最大軸力;對(duì)等直桿來(lái)講,將它代入公式(7-2),即得桿內(nèi)的最大應(yīng)力為:(7-3)此最大軸力所在橫截面稱為危險(xiǎn)截面,由此式算得的正應(yīng)力即危險(xiǎn)截面上的正應(yīng)力,稱為最大工作應(yīng)力。一橫截面面積A=400mm2的等直桿,其受力如圖所示。試求此桿的最大工作應(yīng)力。解:此桿的最大軸力為:最大工作應(yīng)力為:20kN20kN30kN.ABCDFN(kN)x3020O例題7-2一橫截面為正方形的磚柱分上下兩段,其受力情況、各段長(zhǎng)度及橫截面尺寸如圖所示。已知F=50kN,試求荷載引起的最大工作應(yīng)力。
解:首先作軸力圖。由于此柱為變截面桿,因此要求出每段柱的橫截面上的正應(yīng)力,從而確定全柱的最大工作應(yīng)力。50kN150kN(b)370FFF30004000240(a)例題7-350kN150kN(b)370FFF30004000240(a)例題7-3最大工作應(yīng)力為:50kN150kN(b)370FFF30004000240(a)例題7-3試論證若桿件橫截面上的正應(yīng)力處處相等,則相應(yīng)的法向分布內(nèi)力的合力必通過(guò)橫截面的形心。反之,法向分布內(nèi)力的合力雖通過(guò)形心,但正應(yīng)力在橫截面上卻不一定處處相等。根據(jù)平行力系求合力的辦法,可知桿件橫截面上的正應(yīng)力均勻分布,則其合力必過(guò)橫截面的形心(即該合力為軸力),但橫截面上的正應(yīng)力非均勻分布時(shí),它們?nèi)钥赡苤唤M成軸力。思考題7-3
注意:拉、壓桿橫截面上正應(yīng)力的計(jì)算公式是建立在變形符合平面假設(shè)的基礎(chǔ)上的。因而桿件受軸向拉伸或壓縮時(shí),只有在變形符合這一假設(shè),且材料均勻連續(xù)的條件下,才能應(yīng)用該公式。工程上常見的帶有切口、油孔等的軸向受拉桿件,在上述那些部位,由于截面尺寸急劇變化,同一橫截面上的正應(yīng)力并非處處相等,而有局部增大現(xiàn)象,即產(chǎn)生所謂“應(yīng)力集中”。應(yīng)力集中處的局部最大應(yīng)力smax與按等截面桿算得的應(yīng)力s0之比稱為應(yīng)力集中系數(shù)a
:FFadF§7-3拉壓桿的強(qiáng)度計(jì)算為使桿件在外力作用下不致發(fā)生斷裂或者顯著的永久變形(即塑性變形),即不致發(fā)生強(qiáng)度破
壞,桿件內(nèi)最大工作應(yīng)力smax不能超過(guò)桿件材料所能承受的極限應(yīng)力su,而且要有一定的安全儲(chǔ)備。這一強(qiáng)度條件可用下式來(lái)表達(dá)上式中,n
是大于1的系數(shù),稱為安全系數(shù),其數(shù)值通常是由設(shè)計(jì)規(guī)范規(guī)定的。它包括了兩方面的材料受拉伸(壓縮)時(shí)的極限應(yīng)力要通過(guò)試驗(yàn)來(lái)測(cè)定。應(yīng)力除以安全系數(shù)得到材料能安全工作的容許應(yīng)力[s]。于是強(qiáng)度條件又可寫作應(yīng)用強(qiáng)度條件可對(duì)拉、壓桿件進(jìn)行如下三類計(jì)算:考慮。一方面是強(qiáng)度條件中有些量的本身就存在著主觀認(rèn)識(shí)與客觀實(shí)際間的差異,另一方面則是給構(gòu)件以必要的安全儲(chǔ)備。
3.確定許可荷載——已知桿件的橫截面積A、材料的容許應(yīng)力[s]以及桿件所承受的荷載的情況,根據(jù)強(qiáng)度條件確定荷載的最大容許值。2.選擇截面尺寸——已知荷載及容許應(yīng)力,根據(jù)強(qiáng)度條件選擇截面尺寸。1.校核強(qiáng)度——已知桿件的橫截面面積A、材料的容許應(yīng)力[s]以及桿件所承受的荷載,檢驗(yàn)上式是否滿足,從而判定桿件是否具有足夠的強(qiáng)度:
解:首先作桿的軸力圖如圖(b)所示。一橫截面為矩形的鋼制階梯狀直桿,其受力情況、各段長(zhǎng)度如圖(a)所示。BC段和CD段的橫截面面積是AB段橫截面面積的兩倍。矩形截面的高度與寬度之比
h/b=1.4,材料的容許應(yīng)力[s]=160MPa。試選擇各段桿的橫截面尺寸h和b。ABCD20kN40kN50kN0.5m0.5m1m(a)OxFN/kN202030(b)對(duì)于AB段,要求:例題7-4對(duì)于CD段,要求由題意知CD段的面積是AB段的兩倍,應(yīng)取ABCD20kN40kN50kN0.5m0.5m1m(a)OxFN/kN202030(b)例題7-4可得AB段橫截面的尺寸b1及h1:由由可得CD段橫截面的尺寸b2及h2:例題7-4圖示一等直桿在自重和力F
作用下的示意圖。已知桿的橫截面面積為A,材料容重為g,容許應(yīng)力為[s]
。試分析桿的自重對(duì)強(qiáng)度的影響。解:要研究自重對(duì)桿的強(qiáng)度的影響,應(yīng)探討自重與桿內(nèi)最大正應(yīng)力的關(guān)系,為此可先算出桿的任一橫截面上的軸力,從而求出桿的最大軸力。FlAB例題7-5作軸力圖如下:FNxFF+Ag
lFlABxFAgxFN(x)FN(x)=F+Ag
x例題7-5由此可見,若桿的gl與其材料的[s]相比很小,則桿的自重影響很小而可忽略不計(jì)。FNxFF+Ag
l例題7-5解:(1)首先求斜桿和橫桿的軸力與荷載的關(guān)系。2mACBFyxFF2F1A有一三角架如圖所示,其斜桿由兩根等邊角鋼組成,橫桿由兩根10號(hào)槽鋼組成,材料均為Q235
鋼,容許應(yīng)力[s]=120MPa。求許可荷載[F]。例題7-6
(2)計(jì)算許可軸力。由型鋼表查得:2mACBFyxFF2F1A由強(qiáng)度條件知許可軸力為:例題7-62mACBFyxFF2F1A(3)計(jì)算許可荷載。故斜桿和橫桿都能安全工作的許可荷載應(yīng)取例題7-6§7-4斜截面上的應(yīng)力實(shí)驗(yàn)表明,拉(壓)桿的強(qiáng)度破壞并不一定沿橫截面發(fā)生,有時(shí)是沿某一斜截面發(fā)生。為了研究其破壞原因,討論斜截面上的應(yīng)力。kFFkkFFk(a)kFk(b)問(wèn)題:仿照前面求正應(yīng)力的分析過(guò)程,同樣可知斜截面上的應(yīng)力處處相等。(A為橫截面的面積)kFk(b)A(c)應(yīng)力狀態(tài):通過(guò)一點(diǎn)的所有各截面上的應(yīng)力其全部情況。單向應(yīng)力狀態(tài):一點(diǎn)處的應(yīng)力狀態(tài)由其橫截面上的正應(yīng)力即可完全確定。以上的分析結(jié)果對(duì)壓桿也同樣適用。以上兩式表達(dá)了通過(guò)拉桿內(nèi)任一點(diǎn)的不同斜截面上的正應(yīng)力和切應(yīng)力隨a
角而改變的規(guī)律。(b)xkFFk(a)n拉(壓)桿最大切應(yīng)力發(fā)生在與軸線成±45o
的斜截面上,其大小為最大正應(yīng)力的一半。(b)x受軸向拉(壓)的桿件,其斜截面上的應(yīng)力與橫截面上的應(yīng)力有下面的確定關(guān)系,那么,對(duì)于由某種材料制成的拉桿如果實(shí)際上是由于而引起的強(qiáng)度破壞,是否可用作為強(qiáng)度破壞的判據(jù)呢?思考題7-4拉(壓)桿任意兩個(gè)互相垂直的截面k-k
和
n-n
上的切應(yīng)力為:kFFknn切應(yīng)力互等定理:任何受力物體內(nèi)一點(diǎn)處,兩個(gè)相互垂直截面上與這兩個(gè)面的交線垂直方向的切應(yīng)力,也必定大小相等,而指向都對(duì)著(或都背離)這兩個(gè)垂直截面的交線。F(b)kFFknn(a)單向拉伸(壓縮)時(shí)的應(yīng)力圓:
代表斜截面上應(yīng)力的點(diǎn)必落在這個(gè)圓周上。C(a)O根據(jù)下式可知,注意b與a
的轉(zhuǎn)向相同。(b)OCDEA(2)如果是這樣,是否說(shuō)明了以及?思考題7-5(1)應(yīng)力圓上代表拉(壓)桿兩個(gè)相互垂直截面上應(yīng)力的點(diǎn),是否位于直徑的兩端?(b)OCDEA參照右圖可得出如下結(jié)論:OCDEAF思考題7-5圖示一從拉桿內(nèi)取出的一個(gè)微小的正六面體(單元體)及其應(yīng)力狀態(tài),求圖示斜截面上的應(yīng)力,并求該單元體中的最大切應(yīng)力及其作用面。xyn(a)解:(1)作應(yīng)力圓C(b)DOBA例題7-7xn(c)求所示斜截面上的應(yīng)力,如圖(c)所示。(3)求最大切應(yīng)力,如圖(b)所示。最大切應(yīng)力發(fā)生在B及B′點(diǎn),并有:C(b)DOBA例題7-7xn(d)xn(e)最大切應(yīng)力的作用面如下圖所示。例題7-7(1)(e)圖所示斜截面上的正應(yīng)力和切應(yīng)力其數(shù)值和指向是否正確?思考題7-6xn(e)xyn(a)(2)圖(a)所示斜截面上的應(yīng)力,其數(shù)值和指向與圖(b)所示是否相同?(b)xy(b)參照下圖分析CDOBA思考題7-6§7-5拉(壓)桿的變形與位移1.胡克定律FFld實(shí)驗(yàn)表明,工程上許多材料,如低碳鋼、合金鋼等都有一個(gè)線彈性階段,即:(FN為軸力,A為截面積)引入比例常數(shù)E有:上式即為拉(壓)桿的胡克定律。式中E為彈性模量,其量綱為,常用單位為MPa。FFld(單向應(yīng)力狀態(tài)時(shí)的胡克定律)FFld該式表達(dá)的是均勻伸長(zhǎng)時(shí)的線應(yīng)變。2.橫向變形系數(shù)——泊松比n橫向線應(yīng)變?yōu)椋簩?shí)驗(yàn)證實(shí):泊松比是一與材料有關(guān)的無(wú)量綱的量,其數(shù)值通過(guò)實(shí)驗(yàn)測(cè)定。FFld若在受力物體內(nèi)一點(diǎn)處已測(cè)得兩個(gè)相互垂直的x
和y
方向均有線應(yīng)變,則是否在
x
和
y
方向必定均作用有正應(yīng)力?若測(cè)得僅x
方向有線應(yīng)變,則是否y
方向無(wú)正應(yīng)力?若測(cè)得x
和
y方向均無(wú)線應(yīng)變,則是否x
和
y
方向必定均無(wú)正應(yīng)力?思考題7-7
解:首先作軸力圖。若認(rèn)為基礎(chǔ)無(wú)沉陷,則磚柱頂面下降的位移等于全柱的縮短。一橫截面為正方形的磚柱分上下兩段,其受力情況、各段長(zhǎng)度及橫截面尺寸如圖所示。已知F=50kN,材料的彈性模量。試求磚柱頂面的位移。50kN150kN(b)370FFF30004000240(a)由于此柱為變截面桿,且上下兩段軸力不等因此要分段計(jì)算。例題7-850kN150kN(b)370FFF30004000240(a)由此得例題7-8圖示兩根等截面桿,(1)它們的總變形是否相同?(2)它們的變形程度是否相同?(3)兩桿哪些相應(yīng)截面的縱向位移相同?思考題7-8F2lA/2(b)FlA(a)圖(a)是一等直桿在自重和力F
作用下的示意圖。已知桿的橫截面面積為A,材料容重為g,彈性模量為E,桿長(zhǎng)為l。試求桿的總伸長(zhǎng)。解:要求桿的總伸長(zhǎng),首先作出軸力圖。FlAB(a)例題7-8作軸力圖如下:FNxFF+Ag
xFlABxFAgxFN(x)FN(x)=F+Ag
x例題7-8FlABxFN(x)FN(x)=F+Ag
xdxAgdxFN(x+dx)(P為桿的總重量)自重引起的伸長(zhǎng)怎樣考慮?例題7-8圖示桿任意橫截面m-m的縱向位移是否可由下式計(jì)算:思考題7-9mmFlABxFN(x)FN(x)=F+Ag
xdxAgdxFN(x+dx)FABCO12圖示桿系由鋼桿1、2組成。各桿的長(zhǎng)度均為l=2m,直徑均為d
=25mm。已知變形前a=30o鋼的彈性模量E=2.1×105MPa,荷載F=100kN,試求節(jié)點(diǎn)A的位移DA。例題7-9BCO12A12A解:分析可知結(jié)點(diǎn)A只有豎直位移yFAxFN1FN2例題7-912A問(wèn)題:位移與變形的區(qū)別?例題7-9應(yīng)變能(U):彈性體在外力作用下產(chǎn)生變形時(shí),其內(nèi)部?jī)?chǔ)存有能量,當(dāng)外力除去時(shí)這種彈性應(yīng)變能也就隨變形的消失而釋放出來(lái)。研究拉(壓)桿在線性彈性范圍內(nèi)工作時(shí)的應(yīng)變能?!?-6拉(壓)內(nèi)的應(yīng)變能lABF(a)OFABdFFF1(b)如果荷載緩慢地增大,而可以不計(jì)動(dòng)能,并忽略熱能等,根據(jù)能量守恒原理,荷載作的功在數(shù)值上等于拉桿內(nèi)的應(yīng)變能。對(duì)于圖示桿,其應(yīng)變能為:應(yīng)變能的單位與功相同,為焦(J):上面的公式適用于線彈性范圍。lABF(a)拉(壓)桿單位體積內(nèi)所積蓄的應(yīng)變能——比能u為
比能的常用單位是:圖示為從某受力物體內(nèi)取出的單向受力的單元體,其左右兩個(gè)面上的力如圖(b)所示。若材料是線性彈性的,那么該單元體沿力的作用方向的伸長(zhǎng)為多少?該單元體內(nèi)的應(yīng)變能是多少?該單元體內(nèi)的比能為多少?d
xdydz(a)(b)思考題7-10桿系如圖所示,(1)求該系統(tǒng)內(nèi)的應(yīng)變能U,(2)求外力所作的功W。FABCO12BCO12A12AyFAxFN1FN2例題7-10圖示桿系由鋼桿1、2組成。各桿的長(zhǎng)度均為l=2m,直徑均為d
=25mm。已知變形前a=30o鋼的彈性模量E=2.1×105MPa,荷載F=100kN。系統(tǒng)的應(yīng)變能為:解:(1)例7-8的結(jié)果知BCO12A例題7-10(2)外力的功為:BCO12A例題7-10圖示的三根圓截面桿,其材料、支撐情況、荷載F及長(zhǎng)度l均相同,但直徑及其變化不同。試比較這三根桿內(nèi)的應(yīng)變能。自重不計(jì)。Fl(a)1dFl(b)2d2ddl/4Fl(c)32ddl/8例題7-12解:計(jì)算1桿的應(yīng)變能Fl(a)1dFl(b)2d2ddl/4計(jì)算2桿的應(yīng)變能時(shí),應(yīng)分段計(jì)算:例題7-12同理3桿的應(yīng)變能為:Fl(a)1dFl(b)2d2ddl/4體積增大,1、2、3桿的應(yīng)變能依次減少。Fl(c)32ddl/8例題7-12如圖所示,重量為P的重物從高處自由落下,在與桿AB下端的盤B碰撞后不發(fā)生回跳。已知自由落距為h,桿的長(zhǎng)度為l,盤及桿重均可不計(jì)。試求桿的最大伸長(zhǎng)及其橫截面上的最大拉應(yīng)力。Pl(a)ABhPdl(b)ABPl(c)AB例題7-13解:碰撞結(jié)束后,桿的伸長(zhǎng)達(dá)到最大值——圓盤的最大位移。相應(yīng)于這個(gè)最大位移的假想靜荷載稱為沖擊荷載,以Pd表示。相應(yīng)的應(yīng)力稱為沖擊應(yīng)力,以表sd示。Pdl(b)AB例題7-13Pdl(b)AB材料在線彈性范圍內(nèi)工作時(shí),上述結(jié)果正確。例題7-13(1)若圖中重物不是從高處自由下落而是驟然加在桿AB下端的盤
B上,則沖擊系數(shù)為多少?(2)圖(b)、(c)、(d)所示三根桿件若承受(a)那樣的沖擊,試求它們的沖擊系數(shù)之比。思考題7-11Pl(a)ABhPl(b)1dPl(c)2d2ddl/4Fl(d)32ddl/8思考題7-11參考答案:Pl(a)ABh(1)思考題7-11參考答案:Pl(a)ABhPl(d)32ddl/8Pl(b)1dPl(c)2d2ddl/4(2)Pl(a)ABhPl(d)32ddl/8Pl(b)1dPl(c)2d2ddl/4思考題7-11參考答案:(3)推導(dǎo)公式時(shí)略去了碰撞過(guò)程中能量的損失,那么由此算得的Kd是偏大還是偏???答:偏大§7-7低碳鋼和鑄鐵受拉伸和壓縮時(shí)的力學(xué)性能1.材料的拉伸和壓縮試驗(yàn)
圓截面試樣:l=10d或l=5d(工作段長(zhǎng)度稱為標(biāo)距)。
矩形截面試樣:或。
拉伸試樣試驗(yàn)設(shè)備:(1)萬(wàn)能試驗(yàn)機(jī):強(qiáng)迫試樣變形并測(cè)定試樣的抗力。(2)變形儀:將試樣的微小變形放大后加以顯示的儀器。圓截面短柱(用于測(cè)試金屬材料的力學(xué)性能)正方形截面短柱(用于測(cè)試非金屬材料的力學(xué)性能)壓縮試樣實(shí)驗(yàn)裝置(萬(wàn)能試驗(yàn)機(jī))2.低碳鋼試樣的拉伸圖及低碳鋼的力學(xué)性能
拉伸圖縱坐標(biāo)——試樣的抗力F(通常稱為荷載)橫坐標(biāo)——試樣工作段的伸長(zhǎng)量低碳鋼試樣在整個(gè)拉伸過(guò)程中的四個(gè)階段:
(1)階段Ⅰ——彈性階段變形完全是彈性的,且Δl與F成線性關(guān)系,即此時(shí)材料的力學(xué)行為符合胡克定律。
(2)階段Ⅱ——屈服階段
在此階段伸長(zhǎng)變形急劇增大,但抗力只在很小范圍內(nèi)波動(dòng)。此階段產(chǎn)生的變形是不可恢復(fù)的所謂塑性變形;在拋光的試樣表面上可見大約與軸線成45°的滑移線(,當(dāng)α=±45°時(shí)τa
的絕對(duì)值最大)。(3)階段Ⅲ——強(qiáng)化階段
卸載及再加載規(guī)律若在強(qiáng)化階段卸載,則卸載過(guò)程中F-Δl關(guān)系為直線。可見在強(qiáng)化階段中,Δl=Δle+Δlp。
卸載后立即再加載時(shí),F(xiàn)-Δl關(guān)系起初基本上仍為直線(cb),直至當(dāng)初卸載的荷載——冷作硬化現(xiàn)象。試樣重新受拉時(shí)其斷裂前所能產(chǎn)生的塑性變形則減小。
(4)階段Ⅳ——局部變形階段試樣上出現(xiàn)局部收縮——頸縮,并導(dǎo)致斷裂。
低碳鋼的應(yīng)力—應(yīng)變曲線(s
-e曲線)為消除試件尺寸的影響,將低碳鋼試樣拉伸圖中的縱坐標(biāo)和橫坐標(biāo)換算為應(yīng)力s和應(yīng)變e,即,其中:A——試樣橫截面的原面積,l——試樣工作段的原長(zhǎng)。低碳鋼
s-e曲線上的特征點(diǎn):比例極限sp(proportionallimit)
彈性極限se(elasticlimit)屈服極限ss(屈服的低限)(yieldlimit)強(qiáng)度極限sb(拉伸強(qiáng)度)(ultimatestrength)Q235鋼的主要強(qiáng)度指標(biāo):ss
=240MPa,sb
=390MPa低碳鋼拉伸試件低碳鋼拉伸破壞低碳鋼拉伸破壞斷口低碳鋼的塑性指標(biāo):
伸長(zhǎng)率斷面收縮率:A1——斷口處最小橫截面面積。Q235鋼:y≈60%Q235鋼:
(通常d
>5%的材料稱為塑性材料)注意:
1.低碳鋼的ss,sb都還是以相應(yīng)的抗力除以試樣橫截面的原面積所得,實(shí)際上此時(shí)試樣直徑已顯著縮小,因而它們是名義應(yīng)力。
2.低碳鋼的強(qiáng)度極限sb是試樣拉伸時(shí)最大的名義應(yīng)力,并非斷裂時(shí)的應(yīng)力。
3.超過(guò)屈服階段后的應(yīng)變還是以試樣工作段的伸長(zhǎng)量除以試樣的原長(zhǎng)而得,因而是名義應(yīng)變(工程應(yīng)變)。
4.伸長(zhǎng)率是把拉斷后整個(gè)工作段的均勻塑性伸長(zhǎng)變形和頸縮部分的局部塑性伸長(zhǎng)變形都包括在內(nèi)的一個(gè)平均塑性伸長(zhǎng)率。標(biāo)準(zhǔn)試樣所以規(guī)定標(biāo)距與橫截面面積(或直徑)之比,原因在此。思考:低碳鋼的同一圓截面試樣上,若同時(shí)畫有兩種標(biāo)距(l=10d
和l=5d,試問(wèn)所得伸長(zhǎng)率d10和d5哪一個(gè)大?
Ⅲ.其他金屬材料在拉伸時(shí)的力學(xué)性能由s-e曲線可見:材料錳鋼強(qiáng)鋁退火球墨鑄鐵彈性階段√√√屈服階段×××強(qiáng)化階段√√√局部變形階段×√√伸長(zhǎng)率>5%>5%>5%sp0.2(規(guī)定非比例伸長(zhǎng)應(yīng)力,屈服強(qiáng)度)用于無(wú)屈服階段的塑性材料割線彈性模量用于基本上無(wú)線彈性階段的脆性材料脆性材料拉伸時(shí)的唯一強(qiáng)度指標(biāo):sb←基本上就是試樣拉斷時(shí)橫截面上的真實(shí)應(yīng)力。鑄鐵拉伸破壞斷口4.金屬材料在壓縮時(shí)的力學(xué)性能
低碳鋼拉、壓時(shí)的ss基本相同。低碳鋼壓縮時(shí)s-e的曲線低碳鋼材料軸向壓縮時(shí)的試驗(yàn)現(xiàn)象鑄鐵壓縮時(shí)的sb和d均比拉伸時(shí)大得多;不論拉伸和壓縮時(shí)在較低應(yīng)力下其力學(xué)行為也只近似符合胡克定律?;铱阼T鐵壓縮時(shí)的s-e曲線試樣沿著與橫截面大致成50°-55°的斜截面發(fā)生錯(cuò)動(dòng)而破壞。材料依在常溫(室溫)、靜荷載(徐加荷載)下由拉伸試驗(yàn)所得伸長(zhǎng)率區(qū)分為塑性材料和脆性材料。鑄鐵壓縮破壞斷口:鑄鐵壓縮破壞5.
幾種非金屬材料的力學(xué)性能(1)混凝土壓縮時(shí)的力學(xué)性能使用標(biāo)準(zhǔn)立方體試塊測(cè)定端面潤(rùn)滑時(shí)的破壞形式端面未潤(rùn)滑時(shí)的破壞形式壓縮強(qiáng)度sb及破壞形式與端面潤(rùn)滑情況有關(guān)。以s-e曲線上s
=0.4sb的點(diǎn)與原點(diǎn)的連線確定“割線彈性模量”?;炷恋臉?biāo)號(hào)系根據(jù)其壓縮強(qiáng)度標(biāo)定,如C20混凝土是指經(jīng)28天養(yǎng)護(hù)后立方體強(qiáng)度不低于20MPa的混凝土。壓縮強(qiáng)度遠(yuǎn)大于拉伸強(qiáng)度。木材的力學(xué)性能具有方向性,為各向異性材料。如認(rèn)為木材任何方面的力學(xué)性能均可由順紋和橫紋兩個(gè)相互垂直方向的力學(xué)性能確定,則又可以認(rèn)為木材是正交異性材料。松木在順紋拉伸、壓縮和橫紋壓縮是的s
-e曲線如圖。(2)木材拉伸和壓縮時(shí)的力學(xué)性能木材的橫紋拉伸強(qiáng)度很低(圖中未示),工程中也避免木材橫紋受拉。木材的順紋拉伸強(qiáng)度受木節(jié)等缺陷的影響大。(3)玻璃鋼(玻璃纖維與熱固性樹脂粘合而成的復(fù)合材料)纖維單向排列的玻璃鋼沿纖維方向拉伸時(shí)的s
-e曲線如圖中(c),纖維增強(qiáng)復(fù)合材料所用的纖維尚有碳纖維、硼纖維等。7.8.1超靜定的基本概念1.靜定結(jié)構(gòu)與超靜定結(jié)構(gòu)靜定結(jié)構(gòu)——由靜力平衡方程可求出全部未知力?!?-8簡(jiǎn)單的拉、壓超靜定問(wèn)題(a)FACB(b)FABCFN1FN2(c)ABFFN1FN2超靜定結(jié)構(gòu)——僅由靜力平衡方程不能求出全部未知力。超靜定的次數(shù)——未知量數(shù)目與獨(dú)立平衡方程數(shù)目之差。(a)FACB(b)FABCFN1FN2(c)ABFFN1FN22.多余約束與超靜定次數(shù)超靜定結(jié)構(gòu)=靜定結(jié)構(gòu)+多余約束多余約束——其對(duì)于保證結(jié)構(gòu)的平衡與幾何不變而言是多余的。多余約束的數(shù)目——超靜定次數(shù)。超靜定次數(shù)=全部未知力數(shù)目-獨(dú)立的平衡方程數(shù)7.8.2求解超靜定問(wèn)題的基本方法1.求解任何超靜定問(wèn)題,都必須同時(shí)考慮三個(gè)方面條件:(1)平衡條件(2)幾何條件(3)物理?xiàng)l件2.解題步驟(1)畫受力圖,列出獨(dú)立的平衡方程,并確定超靜定次數(shù);(2)畫變形關(guān)系圖,列出變形協(xié)調(diào)方程;(3)根據(jù)胡克定律,列出物理方程;(4)將物理方程代入變形協(xié)調(diào)方程得補(bǔ)充方程;(5)聯(lián)立求解平衡方程和補(bǔ)充方程,解出全部未知力。7.8.3荷載作用下的拉壓桿超靜定問(wèn)題已知:
F,l,E,A。求:smax
(a)ABFFCDlll(b)ABFFCDFAFB解:此為一次超靜定問(wèn)題(1)平衡方程(2)變形協(xié)調(diào)方程例題7-14(b)(3)物理方程(c)(a)ABFFCDlll例題7-14(4)解方程,得:(b)ABFFCDFAFB(c)xFN??-例題7-14解:此為一次超靜定問(wèn)題(a)123aalABCF(b)(c)(d)例題7-15判斷上述變形圖是否正確?(e)(f)(g)例題7-15對(duì)(b)圖:(1)平衡方程(b)(2)變形協(xié)調(diào)方程(a)(3)物理方程(b)(a)123aalABCF例題7-15(4)補(bǔ)充方程將(b)代入(a)(b)(5)解方程,得:(a)123aalABCF例題7-15(a)123aalABCF例題7-15若桿3的截面剛度E3A3遠(yuǎn)大于1、2桿的截面剛度EA,則三桿的軸力各為多少?超靜定桿系中各桿內(nèi)力之比與桿件的剛度之比有關(guān)這一情況在靜定桿系中是否存在?原因何在?思考題7-14第七章拉伸和壓縮(a)123aalABCF若圖中三根桿的尺寸和材料完全相同,應(yīng)用對(duì)稱性求解該題。思考題7-15(a)123aalABCFaalABCF(b)F1′F2′F3′aalABCMe=Fa(c)思考題7-15參考答案:aalABCF(b)F1′F2′F3′aalABCMe=Fa(c)7.8.4.拉壓桿的溫度應(yīng)力及裝配應(yīng)力1.溫度應(yīng)力溫度應(yīng)力:由于溫度變化,在超靜定結(jié)構(gòu)中引起的應(yīng)力。(a)靜定結(jié)構(gòu)(b)超靜定結(jié)構(gòu)ABlBlAF高溫車間的鋼筋混凝土梁已知:FFhbldh例題7-16解:lF例題7-16補(bǔ)充方程:例題7-16降低溫度應(yīng)力的措施:伸縮縫,膨脹節(jié)。例題7-162.裝配應(yīng)力火車車輪中輪緣與輪心的過(guò)盈配合(a)(b)pd1(c)td2p7.8.5小結(jié)與討論1.求解超靜定的方法:(1)靜力平衡方程(2)變形協(xié)調(diào)方程(3)物理方程2.超靜定結(jié)構(gòu)的特征:(1)有多余約束,結(jié)構(gòu)相對(duì)較可靠;(2)一般內(nèi)力值與各桿剛度EA有關(guān);補(bǔ)充方程(3)由于溫度變化和制造誤差會(huì)產(chǎn)生初應(yīng)力。3.討論(1)當(dāng)F力為多大時(shí),d
恰好消失?(2)當(dāng)d=0時(shí),d
繼續(xù)加載,如何求解各段的內(nèi)力?Fl1l2d參考答案:(2)補(bǔ)充方程:FABFl1l2dEA1EA2AB§7-9拉(壓)桿接頭的計(jì)算拉(壓)桿相互連接時(shí),可采用螺栓(銷釘)連接、焊接、鉚接等方式。象螺栓等這些連接件,在傳力時(shí)主要受剪切,同時(shí)在側(cè)面上還伴隨有局部擠壓。采用“假定計(jì)算”法:例如對(duì)連接件作剪切強(qiáng)度計(jì)算時(shí),假設(shè)受剪面上各點(diǎn)處剪應(yīng)力相等;而確定容許剪應(yīng)力用的極限剪應(yīng)力也是把連接件剪切破壞時(shí)的剪力除以受剪面面積得出。ABtt1t1FFddFF/2F/2mmnnF1mmF/2FnF1F1nF1FAFdmmnntABtt1t1FFd銷釘如圖(a)所示。已知外力F=18
kN,被連接的構(gòu)件A和B的厚度分別為t=8
mm,t1=5mm,銷釘直徑d=15mm;銷釘材料的容許剪應(yīng)力為[t]=60MPa,容許擠壓應(yīng)力為[sc]=200MPa。試校核銷釘?shù)膹?qiáng)度。ABtt1t1FFd(a)例題7-17解:銷釘受力如圖(b)所示(b)dFF/2F/2mmnnF1mmF/2FnF1F1nF1例題7-17[t]=60MPaFAFdmmnntABtt1t1FFd例題7-17,
銷釘是安全的。FAFdmmnntABtt1t1FFd例題7-17在圖示機(jī)構(gòu)中,各桿的橫截面面積為3000mm2。力F為100kN。求各桿橫截面上的正應(yīng)力。F3m4m2mBACD思考題7-16思考題7-16參考答案:FBFBCFBACFBCFACFCDF3m4m2mBACD圖示一混合屋架結(jié)構(gòu)的計(jì)算簡(jiǎn)圖。屋架的上弦用鋼筋混凝土制成;拉桿和豎向撐桿均用兩根75×8mm的等邊角鋼構(gòu)成,已知屋面承受沿水平線的線集度為q=20kN/m的豎直均布荷載。求拉桿AE和EG橫截面上的應(yīng)力。qDFB
EGAC4.37m
9m
4.37m1m1.2m思考題7-17ACFAFCyFEGFCxEqFEGFEAFEDE思考題7-17參考答案:qDFB
EGAC4.37m
9m
4.37m1m1.2m結(jié)構(gòu)如圖所示,桿件AB,AD均由兩根等邊角鋼組成。已知材料的容許應(yīng)力[s]=170
MPa,試為AB,AD桿選擇等邊角鋼的型號(hào)。300kN/m2mEDABC思考題7-18思考題7-18參考答案:D300kN/mEFADFEyFExAFADFABFAC300kN/m2mEDABC一木柱受力如圖所示,柱的橫截面為邊長(zhǎng)200mm的正方形,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《認(rèn)識(shí)并戰(zhàn)勝冠心病》課件
- 收廢品職務(wù)勞務(wù)合同(2篇)
- 2024年版高壓洗車設(shè)備銷售協(xié)議2篇
- 《LED的熱學(xué)特性》課件
- 2025年濱州貨運(yùn)資格證題庫(kù)在線練習(xí)
- 2025年西藏從業(yè)資格證500道題速記
- 2025年安康貨運(yùn)從業(yè)資格證考試試題及答案
- 2025年玉樹道路運(yùn)輸從業(yè)資格證考哪些項(xiàng)目
- 2024年牛肉供貨商協(xié)議范本3篇
- 2025年石家莊貨運(yùn)從業(yè)資格考試題目大全及答案
- 中印戰(zhàn)爭(zhēng)完整版本
- 公路工程資料整理-課件
- 招投標(biāo)-招投標(biāo)管理
- 口腔醫(yī)院器械培訓(xùn)課件
- 群眾性活動(dòng)安全管理培訓(xùn)模板
- 《月亮和六便士》名著導(dǎo)讀讀書分享PPT
- 預(yù)防打架斗毆社會(huì)普法課件
- 四川省巴中市2023-2024學(xué)年高二1月期末生物試題【含答案解析】
- 南京航空航天大學(xué)宣傳
- 律師的職業(yè)責(zé)任
- 國(guó)開《資源與運(yùn)營(yíng)管理-0030》期末機(jī)考【答案】
評(píng)論
0/150
提交評(píng)論