版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1、函數(shù)零點(diǎn)的定義
(1)對(duì)于函數(shù))(xfy,我們把方程0)(xf的實(shí)數(shù)根叫做函數(shù))(xfy的零點(diǎn)。
(2)方程0)(xf有實(shí)根?函數(shù)()yfx的圖像與x軸有交點(diǎn)?函數(shù)()yfx有零點(diǎn)。因此推斷一個(gè)函數(shù)是否有零點(diǎn),有幾個(gè)零點(diǎn),就是推斷方程0)(xf是否有實(shí)數(shù)根,有幾個(gè)實(shí)數(shù)根。函數(shù)零點(diǎn)的求法:解方程0)(xf,所得實(shí)數(shù)根就是()fx的零點(diǎn)(3)變號(hào)零點(diǎn)與不變號(hào)零點(diǎn)
①若函數(shù)()fx在零點(diǎn)0x左右兩側(cè)的函數(shù)值異號(hào),則稱該零點(diǎn)為函數(shù)()fx的變號(hào)零點(diǎn)。②若函數(shù)()fx在零點(diǎn)0x左右兩側(cè)的函數(shù)值同號(hào),則稱該零點(diǎn)為函數(shù)()fx的不變號(hào)零點(diǎn)。
③若函數(shù)()fx在區(qū)間,ab上的圖像是一條連續(xù)的曲線,則0)()(
2、函數(shù)零點(diǎn)的判定
(1)零點(diǎn)存在性定理:假如函數(shù))(xfy在區(qū)間],[ba上的圖象是連續(xù)不斷的曲線,并且有()()0fafb,那么,函數(shù))(xfy在區(qū)間,ab內(nèi)有零點(diǎn),即存在),(0bax,使得0)(0xf,這個(gè)0x也就是方程0)(xf的根。
(2)函數(shù))(xfy零點(diǎn)個(gè)數(shù)(或方程0)(xf實(shí)數(shù)根的個(gè)數(shù))確定方法
①代數(shù)法:函數(shù))(xfy的零點(diǎn)?0)(xf的根;②(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù))(xfy的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn)。
(3)零點(diǎn)個(gè)數(shù)確定
0)(xfy有2個(gè)零點(diǎn)?0)(xf有兩個(gè)不等實(shí)根;0)(xfy有1個(gè)零點(diǎn)?0)(xf有兩個(gè)相等實(shí)根;0)(xfy無(wú)零點(diǎn)?0)(xf無(wú)實(shí)根;對(duì)于二次函數(shù)在區(qū)間,ab上的零點(diǎn)個(gè)數(shù),要結(jié)合圖像進(jìn)展確定.
3、二分法
(1)二分法的定義:對(duì)于在區(qū)間[,]ab上連續(xù)不斷且()()0fafb的函數(shù)()yfx,通過(guò)不斷地把函數(shù)()yfx的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步靠近零點(diǎn),進(jìn)而得到零點(diǎn)的近似值的方法叫做二分法;
(2)用二分法求方程的近似解的步驟:
①確定區(qū)間[,]ab,驗(yàn)證()()0fafb,給定準(zhǔn)確度e;
②求區(qū)間(,)ab的中點(diǎn)c;③計(jì)算()fc;
(ⅰ)若()0fc,則c就是函數(shù)的零點(diǎn);
(ⅱ)若()()0fafc,則令bc(此時(shí)零點(diǎn)0(,)xac);(ⅲ)若()()0fcfb,則令ac(此時(shí)零點(diǎn)0(,)xcb);
④推斷是否到達(dá)準(zhǔn)確度e,即ab,則得到零點(diǎn)近似值為a(或b);否則重復(fù)②至④步.
人教版高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)2
集合的有關(guān)概念
1)集合(集):某些指定的對(duì)象集在一起就成為一個(gè)集合(集).其中每一個(gè)對(duì)象叫元素
留意:①集合與集合的元素是兩個(gè)不同的概念,教科書中是通過(guò)描述給出的,這與平面幾何中的點(diǎn)與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無(wú)序性({a,b}與{b,a}表示同一個(gè)集合)。
③集合具有兩方面的意義,即:但凡符合條件的對(duì)象都是它的元素;只要是它的元素就必需符號(hào)條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無(wú)限集,空集。
4)常用數(shù)集:N,Z,Q,R,N
子集、交集、并集、補(bǔ)集、空集、全集等概念
1)子集:若對(duì)x∈A都有x∈B,則AB(或AB);
2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)
3)交集:A∩B={x|x∈A且x∈B}
4)并集:A∪B={x|x∈A或x∈B}
5)補(bǔ)集:CUA={x|xA但x∈U}
留意:A,若A≠?,則?A;
若且,則A=B(等集)
集合與元素
把握有關(guān)的術(shù)語(yǔ)和符號(hào),特殊要留意以下的符號(hào):(1)與、?的區(qū)分;(2)與的區(qū)分;(3)與的區(qū)分。
子集的幾個(gè)等價(jià)關(guān)系
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
交、并集運(yùn)算的性質(zhì)
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
有限子集的個(gè)數(shù):
設(shè)集合A的元素個(gè)數(shù)是n,則A有2n個(gè)子集,2n-1個(gè)非空子集,2n-2個(gè)非空真子集。
練習(xí)題:
已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿意關(guān)系()
A)M=NPB)MN=PC)MNPD)NPM
分析一:從推斷元素的共性與區(qū)分入手。
解答一:對(duì)于集合M:{x|x=,m∈Z};對(duì)于集合N:{x|x=,n∈Z}
對(duì)于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以MN=P,應(yīng)選B。
人教版高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)3
圓的方程定義:
圓的標(biāo)準(zhǔn)方程(x—a)2+(y—b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關(guān)系:
1、直線和圓位置關(guān)系的判定方法一是方程的觀點(diǎn),即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來(lái)爭(zhēng)論位置關(guān)系。
①Δ>0,直線和圓相交。②Δ=0,直線和圓相切。③Δ0,直線和圓相交.②Δ=0,直線和圓相切.③Δ0,則a可以是任意實(shí)數(shù);
排解了為0這種可能,即對(duì)于x0的全部實(shí)數(shù),q不能是偶數(shù);
排解了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的全部實(shí)數(shù),a就不能是負(fù)數(shù)。
總結(jié)起來(lái),就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不憐憫況如下:假如a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的全部實(shí)數(shù);
假如a為負(fù)數(shù),則x確定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必需依據(jù)q的奇偶性來(lái)確定,即假如同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的全部實(shí)數(shù);假如同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的全部實(shí)數(shù)。
在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。
在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。
而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自狀況.
可以看到:
(1)全部的圖形都通過(guò)(1,1)這點(diǎn)。
(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。
(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。
(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。
(5)a大于0,函數(shù)過(guò)(0,0);a小于0,函數(shù)不過(guò)(0,0)點(diǎn)。
(6)明顯冪函數(shù)無(wú)界。
解題方法:換元法
解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問(wèn)題得到簡(jiǎn)化,這種方法叫換元法.換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換討論對(duì)象,將問(wèn)題移至新對(duì)象的學(xué)問(wèn)背景中去討論,從而使非標(biāo)準(zhǔn)型問(wèn)題標(biāo)準(zhǔn)化、簡(jiǎn)單問(wèn)題簡(jiǎn)潔化
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 商業(yè)中心道閘維護(hù)工程合同
- 創(chuàng)投公司購(gòu)房合同模板
- 工業(yè)廠房鋼筋工施工合同范文
- 食品加工貿(mào)易財(cái)務(wù)控制
- 安全生產(chǎn)電工施工合同樣本
- 教師暑期學(xué)習(xí)心得體會(huì)
- 教師節(jié)升旗儀式演講稿
- 大學(xué)生畢業(yè)論文自我鑒定10篇
- 實(shí)習(xí)大學(xué)生個(gè)人心得體會(huì)
- 倉(cāng)庫(kù)管理實(shí)習(xí)心得體會(huì)
- 中醫(yī)內(nèi)科學(xué)虛勞培訓(xùn)課件
- 2024廣東省建筑安全員A證考試題庫(kù)附答案
- 【MOOC】勞動(dòng)與社會(huì)保障法學(xué)-西南政法大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 西安電子科技大學(xué)《人工智能概論》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年建設(shè)銀行個(gè)人住房貸款標(biāo)準(zhǔn)協(xié)議模板一
- 大學(xué)生職業(yè)規(guī)劃采訪稿
- 3、2024廣西專業(yè)技術(shù)人員繼續(xù)教育公需科目參考答案(99分)
- 中國(guó)血管性認(rèn)知障礙診治指南(2024版)解讀
- 2024版房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)內(nèi)容解讀
- 期末 (試題) -2024-2025學(xué)年人教PEP版(2024)英語(yǔ)三年級(jí)上冊(cè)
- 完整2024年國(guó)有企業(yè)管理人員處分條例專題課件
評(píng)論
0/150
提交評(píng)論