江蘇省儀征市古井2023學年中考猜題數(shù)學試卷含解析及點睛_第1頁
江蘇省儀征市古井2023學年中考猜題數(shù)學試卷含解析及點睛_第2頁
江蘇省儀征市古井2023學年中考猜題數(shù)學試卷含解析及點睛_第3頁
江蘇省儀征市古井2023學年中考猜題數(shù)學試卷含解析及點睛_第4頁
江蘇省儀征市古井2023學年中考猜題數(shù)學試卷含解析及點睛_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,平行四邊形ABCD的頂點A、B、D在⊙O上,頂點C在⊙O直徑BE上,連結(jié)AE,若∠E=36°,則∠ADC的度數(shù)是()A.44° B.53° C.72° D.54°2.如圖,平面直角坐標系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點C(3,2),連接OC.以O(shè)C為對稱軸將OA翻折到OA′,反比例函數(shù)y=的圖象恰好經(jīng)過點A′、B,則k的值是()A.9 B. C. D.33.已知,如圖,AB是⊙O的直徑,點D,C在⊙O上,連接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度數(shù)是()A.75° B.65° C.60° D.50°4.我國的釣魚島面積約為4400000m2,用科學記數(shù)法表示為()A.4.4×106B.44×105C.4×106D.0.44×1075.從邊長為的大正方形紙板中挖去一個邊長為的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙)。那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為()A. B.C. D.6.如圖,是半圓圓的直徑,的兩邊分別交半圓于,則為的中點,已知,則()A. B. C. D.7.對于任意實數(shù)k,關(guān)于x的方程的根的情況為A.有兩個相等的實數(shù)根 B.沒有實數(shù)根C.有兩個不相等的實數(shù)根 D.無法確定8.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A,B,C.現(xiàn)有下面四個推斷:①拋物線開口向下;②當x=-2時,y取最大值;③當m<4時,關(guān)于x的一元二次方程ax2+bx+c=m必有兩個不相等的實數(shù)根;④直線y=kx+c(k≠0)經(jīng)過點A,C,當kx+c>ax2+bx+c時,x的取值范圍是-4<x<0;其中推斷正確的是()A.①② B.①③ C.①③④ D.②③④9.在△ABC中,AB=AC=13,BC=24,則tanB等于()A. B. C. D.10.某運動器材的形狀如圖所示,以箭頭所指的方向為左視方向,則它的主視圖可以是()A.B.C.D.二、填空題(本大題共6個小題,每小題3分,共18分)11.函數(shù)的自變量x的取值范圍是_____.12.如果關(guān)于x的方程(m為常數(shù))有兩個相等實數(shù)根,那么m=______.13.在正方形鐵皮上剪下一個扇形和一個半徑為1cm的圓形,使之恰好圍成一個圓錐,則圓錐的高為______.14.如圖,是由一些大小相同的小正方體搭成的幾何體分別從正面看和從上面看得到的平面圖形,則搭成該幾何體的小正方體最多是_______個.15.在△ABC中,AB=1,BC=2,以AC為邊作等邊三角形ACD,連接BD,則線段BD的最大值為_____.16.如圖,AB為圓O的直徑,弦CD⊥AB,垂足為點E,連接OC,若OC=5,CD=8,則AE=______.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點,已知點A(﹣3,0),B(0,3),C(1,0).(1)求此拋物線的解析式.(2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點P作x軸的垂線,垂足為F,交直線AB于點E,作PD⊥AB于點D.動點P在什么位置時,△PDE的周長最大,求出此時P點的坐標.18.(8分)我國南水北調(diào)中線工程的起點是丹江口水庫,按照工程計劃,需對原水庫大壩進行混凝土培厚加高,使壩高由原來的162米增加到176.6米,以抬高蓄水位,如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的寬度AC.(結(jié)果精確到0.1米,參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.5,≈1.73)19.(8分)“知識改變命運,科技繁榮祖國”.在舉辦一屆全市科技運動會上.下圖為某校2017年參加科技運動會航模比賽(包括空模、海模、車模、建模四個類別)的參賽人數(shù)統(tǒng)計圖:(1)該校參加航模比賽的總?cè)藬?shù)是人,空模所在扇形的圓心角的度數(shù)是;(2)并把條形統(tǒng)計圖補充完整;(3)從全市中小學參加航模比賽選手中隨機抽取80人,其中有32人獲獎.今年全市中小學參加航模比賽人數(shù)共有2500人,請你估算今年參加航模比賽的獲獎人數(shù)約是多少人?20.(8分)初三(5)班綜合實踐小組去湖濱花園測量人工湖的長,如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學進行如下測量,B點在A點北偏東60°方向,C點在B點北偏東45°方向,C點在D點正東方向,且測得AB=20米,BC=40米,求AD的長.(≈1.732,≈1.414,結(jié)果精確到0.01米)21.(8分)某校為了解學生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.根據(jù)以上信息,解答下列問題:(1)這次調(diào)查一共抽取了名學生,其中安全意識為“很強”的學生占被調(diào)查學生總數(shù)的百分比是;(2)請將條形統(tǒng)計圖補充完整;(3)該校有1800名學生,現(xiàn)要對安全意識為“淡薄”、“一般”的學生強化安全教育,根據(jù)調(diào)查結(jié)果,估計全校需要強化安全教育的學生約有名.22.(10分)東東玩具商店用500元購進一批悠悠球,很受中小學生歡迎,悠悠球很快售完,接著又用900元購進第二批這種悠悠球,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進價多了5元.求第一批悠悠球每套的進價是多少元;如果這兩批悠悠球每套售價相同,且全部售完后總利潤不低于25%,那么每套悠悠球的售價至少是多少元?23.(12分)如圖,一枚運載火箭從距雷達站C處5km的地面O處發(fā)射,當火箭到達點A,B時,在雷達站C處測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.求AC和AB的長(結(jié)果保留小數(shù)點后一位)(參考數(shù)據(jù):sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)24.如圖,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函數(shù)y=在第一象限內(nèi)的圖象分別交OA,AB于點C和點D,且△BOD的面積S△BOD=1.求反比例函數(shù)解析式;求點C的坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)直徑所對的圓周角為直角可得∠BAE=90°,再根據(jù)直角三角形的性質(zhì)和平行四邊形的性質(zhì)可得解.【詳解】根據(jù)直徑所對的圓周角為直角可得∠BAE=90°,根據(jù)∠E=36°可得∠B=54°,根據(jù)平行四邊形的性質(zhì)可得∠ADC=∠B=54°.故選D【點睛】本題考查了平行四邊形的性質(zhì)、圓的基本性質(zhì).2、C【解析】

設(shè)B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根據(jù)相似三角形或銳角三角函數(shù)可求得A′(,),根據(jù)反比例函數(shù)性質(zhì)k=xy建立方程求k.【詳解】如圖,過點C作CD⊥x軸于D,過點A′作A′G⊥x軸于G,連接AA′交射線OC于E,過E作EF⊥x軸于F,設(shè)B(,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC==,由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=,∴AE=,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE==sin∠OCD,∴EF=,∵cos∠OAE==cos∠OCD,∴,∵EF⊥x軸,A′G⊥x軸,∴EF∥A′G,∴,∴,,∴,∴A′(,),∴,∵k≠0,∴,故選C.【點睛】本題是反比例函數(shù)綜合題,常作為考試題中選擇題壓軸題,考查了反比例函數(shù)點的坐標特征、相似三角形、翻折等,解題關(guān)鍵是通過設(shè)點B的坐標,表示出點A′的坐標.3、B【解析】因為AB是⊙O的直徑,所以求得∠ADB=90°,進而求得∠B的度數(shù),又因為∠B=∠C,所以∠C的度數(shù)可求出.解:∵AB是⊙O的直徑,

∴∠ADB=90°.

∵∠BAD=25°,

∴∠B=65°,

∴∠C=∠B=65°(同弧所對的圓周角相等).

故選B.

4、A【解析】4400000=4.4×1.故選A.點睛:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).5、D【解析】

分別根據(jù)正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗證成立的公式.【詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【點睛】考點:等腰梯形的性質(zhì);平方差公式的幾何背景;平行四邊形的性質(zhì).6、C【解析】

連接AE,只要證明△ABC是等腰三角形,AC=AB即可解決問題.【詳解】解:如圖,連接AE,

∵AB是直徑,

∴∠AEB=90°,即AE⊥BC,

∵EB=EC,

∴AB=AC,

∴∠C=∠B,

∵∠BAC=50°,

∴∠C=(180°-50°)=65°,

故選:C.【點睛】本題考查了圓周角定理、等腰三角形的判定和性質(zhì)、線段的垂直平分線的性質(zhì)定理等知識,解題的關(guān)鍵是學會添加常用輔助線,靈活運用所學知識解決問題.7、C【解析】判斷一元二次方程的根的情況,只要看根的判別式的值的符號即可:∵a=1,b=,c=,∴.∴此方程有兩個不相等的實數(shù)根.故選C.8、B【解析】

結(jié)合函數(shù)圖象,利用二次函數(shù)的對稱性,恰當使用排除法,以及根據(jù)函數(shù)圖象與不等式的關(guān)系可以得出正確答案.【詳解】解:①由圖象可知,拋物線開口向下,所以①正確;

②若當x=-2時,y取最大值,則由于點A和點B到x=-2的距離相等,這兩點的縱坐標應(yīng)該相等,但是圖中點A和點B的縱坐標顯然不相等,所以②錯誤,從而排除掉A和D;

剩下的選項中都有③,所以③是正確的;

易知直線y=kx+c(k≠0)經(jīng)過點A,C,當kx+c>ax2+bx+c時,x的取值范圍是x<-4或x>0,從而④錯誤.故選:B.【點睛】本題考查二次函數(shù)的圖象,二次函數(shù)的對稱性,以及二次函數(shù)與一元二次方程,二次函數(shù)與不等式的關(guān)系,屬于較復雜的二次函數(shù)綜合選擇題.9、B【解析】如圖,等腰△ABC中,AB=AC=13,BC=24,過A作AD⊥BC于D,則BD=12,在Rt△ABD中,AB=13,BD=12,則,AD=,故tanB=.故選B.【點睛】考查的是銳角三角函數(shù)的定義、等腰三角形的性質(zhì)及勾股定理.10、B【解析】從幾何體的正面看可得下圖,故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≠1【解析】

根據(jù)分母不等于2列式計算即可得解.【詳解】由題意得,x-1≠2,解得x≠1.故答案為x≠1.【點睛】本題考查的知識點為:分式有意義,分母不為2.12、1【解析】析:本題需先根據(jù)已知條件列出關(guān)于m的等式,即可求出m的值.解答:解:∵x的方程x2-2x+m=0(m為常數(shù))有兩個相等實數(shù)根∴△=b2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案為113、cm【解析】

利用已知得出底面圓的半徑為:1cm,周長為2πcm,進而得出母線長,即可得出答案.【詳解】∵半徑為1cm的圓形,∴底面圓的半徑為:1cm,周長為2πcm,扇形弧長為:2π=,∴R=4,即母線為4cm,∴圓錐的高為:(cm).故答案為cm.【點睛】此題主要考查了圓錐展開圖與原圖對應(yīng)情況,以及勾股定理等知識,根據(jù)已知得出母線長是解決問題的關(guān)鍵.14、7【解析】

首先利用從上面看而得出的俯視圖得出該幾何體的第一層是由幾個小正方體組成,然后進一步根據(jù)其從正面看得出的主視圖得知其第二層最多可以放幾個小正方體,然后進一步計算即可得出答案.【詳解】根據(jù)俯視圖可得出第一層由5個小正方體組成;再結(jié)合主視圖,該正方體第二層最多可放2個小正方體,∴,∴最多是7個,故答案為:7.【點睛】本題主要考查了三視圖的運用,熟練掌握三視圖的特性是解題關(guān)鍵.15、3【解析】

以AB為邊作等邊△ABE,由題意可證△AEC≌△ABD,可得BD=CE,根據(jù)三角形三邊關(guān)系,可求EC的最大值,即可求BD的最大值.【詳解】如圖:以AB為邊作等邊△ABE,

,

∵△ACD,△ABE是等邊三角形,

∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,

∴∠EAC=∠BAD,且AE=AB,AD=AC,

∴△DAB≌△CAE(SAS)

∴BD=CE,

若點E,點B,點C不共線時,EC<BC+BE;

若點E,點B,點C共線時,EC=BC+BE.

∴EC≤BC+BE=3,

∴EC的最大值為3,即BD的最大值為3.

故答案是:3【點睛】考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),以及三角形的三邊關(guān)系,恰當添加輔助線構(gòu)造全等三角形是本題的關(guān)鍵.16、2【解析】試題解析:∵AB為圓O的直徑,弦CD⊥AB,垂足為點E.在直角△OCE中,則AE=OA?OE=5?3=2.故答案為2.三、解答題(共8題,共72分)17、(1)y=﹣x2﹣2x+1;(2)(﹣,)【解析】

(1)將A(-1,0),B(0,1),C(1,0)三點的坐標代入y=ax2+bx+c,運用待定系數(shù)法即可求出此拋物線的解析式;(2)先證明△AOB是等腰直角三角形,得出∠BAO=45°,再證明△PDE是等腰直角三角形,則PE越大,△PDE的周長越大,再運用待定系數(shù)法求出直線AB的解析式為y=x+1,則可設(shè)P點的坐標為(x,-x2-2x+1),E點的坐標為(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根據(jù)二次函數(shù)的性質(zhì)可知當x=-時,PE最大,△PDE的周長也最大.將x=-代入-x2-2x+1,進而得到P點的坐標.【詳解】解:(1)∵拋物線y=ax2+bx+c經(jīng)過點A(﹣1,0),B(0,1),C(1,0),∴,解得,∴拋物線的解析式為y=﹣x2﹣2x+1;(2)∵A(﹣1,0),B(0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x軸,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周長越大.設(shè)直線AB的解析式為y=kx+b,則,解得,即直線AB的解析式為y=x+1.設(shè)P點的坐標為(x,﹣x2﹣2x+1),E點的坐標為(x,x+1),則PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,所以當x=﹣時,PE最大,△PDE的周長也最大.當x=﹣時,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,即點P坐標為(﹣,)時,△PDE的周長最大.【點睛】本題是二次函數(shù)的綜合題型,其中涉及到的知識點有運用待定系數(shù)法求二次函數(shù)、一次函數(shù)的解析式,等腰直角三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),三角形的周長,綜合性較強,難度適中.18、工程完工后背水坡底端水平方向增加的寬度AC約為37.3米.【解析】解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).在Rt△DEC中,∠DGE=600,DE=176.6米,∴(米).∴(米).∴工程完工后背水坡底端水平方向增加的寬度AC約為37.3米.在Rt△BAE和Rt△DEC中,應(yīng)用正切函數(shù)分別求出AE和CE的長即可求得AC的長.19、(1)24,120°;(2)見解析;(3)1000人【解析】

(1)由建模的人數(shù)除以占的百分比,求出調(diào)查的總?cè)藬?shù)即可,再算空模人數(shù),即可知道空模所占百分比,從而算出對應(yīng)的圓心角度數(shù);(2)根據(jù)空模人數(shù)然后補全條形統(tǒng)計圖;(3)根據(jù)隨機取出人數(shù)獲獎的人數(shù)比,即可得到結(jié)果.【詳解】解:(1)該校參加航模比賽的總?cè)藬?shù)是6÷25%=24(人),則參加空模人數(shù)為24﹣(6+4+6)=8(人),∴空模所在扇形的圓心角的度數(shù)是360°×=120°,故答案為:24,120°;(2)補全條形統(tǒng)計圖如下:(3)估算今年參加航模比賽的獲獎人數(shù)約是2500×=1000(人).【點睛】此題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,弄清題意是解本題的關(guān)鍵.20、AD=38.28米.【解析】

過點B作BE⊥DA,BF⊥DC,垂足分別為E、F,已知AD=AE+ED,則分別求得AE、DE的長即可求得AD的長.【詳解】過點B作BE⊥DA,BF⊥DC,垂足分別為E,F(xiàn),由題意知,AD⊥CD∴四邊形BFDE為矩形∴BF=ED在Rt△ABE中,AE=AB?cos∠EAB在Rt△BCF中,BF=BC?cos∠FBC∴AD=AE+BF=20?cos60°+40?cos45°=20×+40×=10+20=10+20×1.414=38.28(米).即AD=38.28米.【點睛】解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.21、(1)120,30%;(2)作圖見解析;(3)1.【解析】試題分析:(1)用安全意識分“一般”的人數(shù)除以安全意識分“一般”的人數(shù)所占的百分比即可得這次調(diào)查一共抽取的學生人數(shù);用安全意識分“很強”的人數(shù)除以這次調(diào)查一共抽取的學生人數(shù)即可得安全意識“很強”的學生占被調(diào)查學生總數(shù)的百分比;(2)用這次調(diào)查一共抽取的學生人數(shù)乘以安全意識分“較強”的人數(shù)所占的百分比即可得安全意識分“較強”的人數(shù),在條形統(tǒng)計圖上畫出即可;(3)用總?cè)藬?shù)乘以安全意識為“淡薄”、“一般”的學生一共所占的百分比即可得全校需要強化安全教育的學生的人數(shù).試題解析:(1)12÷15%=120人;36÷120=30%;(2)120×45%=54人,補全統(tǒng)計圖如下:(3)1800×=1人.考點:條形統(tǒng)計圖;扇形統(tǒng)計圖;用樣本估計總體.22、(1)第一批悠悠球每套的進價是25元;(2)每套悠悠球的售價至少是1元.【解析】分析:(1)設(shè)第一批悠悠球每套的進價是x元,則第二批悠悠球每套的進價是(x+5)元,根據(jù)數(shù)量=總價÷單價結(jié)合第二批購進數(shù)量是第一批數(shù)量的1.5倍,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)設(shè)每套悠悠球的售價為y元,根據(jù)銷售收入-成本=利潤結(jié)合全部售完后總利潤不低于25%,即可得出關(guān)于y的一元一次不等式,解之取其中的最小值即可得出結(jié)論.詳解:(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論