版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
線性離散系統(tǒng)的分析與校正第七章在線性連續(xù)系統(tǒng)中,連續(xù)時(shí)間函數(shù)f(t)的拉氏變換為F(s);同樣在線性離散系統(tǒng)中,也可以對(duì)采樣信號(hào)f*(t)作拉氏變換。課前復(fù)習(xí)-z變換的定義采樣信號(hào)f*(t)拉氏變換課前復(fù)習(xí)-z變換的級(jí)數(shù)求和法z變換的級(jí)數(shù)求和法例
求指數(shù)函數(shù)f(t)的z變換解:課前復(fù)習(xí)-級(jí)數(shù)求和法7.1z變換與反變換
z變換部分分式法
z變換留數(shù)法
z變換性質(zhì)z反變換方法(部分分式、冪級(jí)數(shù)法、留數(shù)法)7.1.2、z變換-部分分式法設(shè)連續(xù)信號(hào)f(t)沒(méi)有直接給出,但給出了f(t)的拉氏變換式F(s),求它所對(duì)應(yīng)的z變換式F(z)。首先為了進(jìn)行拉氏變換,將F(s)寫成部分分式之和的形式,即:式中,n為F(s)的極點(diǎn)數(shù)目;Ai為常數(shù),Si為F(s)的極點(diǎn)。然后,由拉氏反變換得出f(t)為對(duì)上式中的每一項(xiàng),都可以利用指數(shù)函數(shù)的z變換直接寫出它所對(duì)應(yīng)的z變換式,這樣就得到了F(z)如下:指數(shù)函數(shù)z變換7.1.2、z變換-部分分式法例:已知函數(shù)f(t)的拉氏變換如下式所示,求f(t)的z變換。解:由可得7.1.2、z變換-部分分式法例:已知函數(shù)f(t)的拉氏變換如下式所示,求f(t)的z變換。解:7.1.2、z變換-部分分式法例:已知函數(shù)f(t)的拉氏變換如下式所示,求f(t)的z變換。解:7.1.2、z變換-部分分式法7.1.3、z變換-留數(shù)法若已知連續(xù)函數(shù)f(t)的拉氏變換式F(s)及全部極點(diǎn)si,則f(t)的z變換可用留數(shù)計(jì)算法求取,即:式中,為F(s)的n1個(gè)單極點(diǎn);
為F(s)的n-n1個(gè)重極點(diǎn);
為重極點(diǎn)的階數(shù);T為采樣周期;
為極點(diǎn)處的留數(shù)。7.1.3、z變換-留數(shù)法例:已知函數(shù)f(t)的拉氏變換如下式所示,求f(t)的z變換。解:7.1.3、z變換-留數(shù)法例:已知函數(shù)f(t)的拉氏變換如下式所示,求f(t)的z變換。解:7.1.3、z變換-留數(shù)法例:已知函數(shù)f(t)的拉氏變換如下式所示,求f(t)的z變換。解:7.1.3、z變換-留數(shù)法7.1.3、z變換7.1.4、z變換性質(zhì)1線性定理若相加與相乘乘以后的z變換?證明:2.實(shí)數(shù)平移定理(位移定理)證明:令滯后超前7.1.4、z變換性質(zhì)例:求、、和的z變換。
是向左移了n個(gè)采樣周期的序列(時(shí)間超前)
是向右移了n個(gè)采樣周期的序列(時(shí)間滯后)7.1.4、z變換性質(zhì)3.復(fù)數(shù)平移定理證明:7.1.4、z變換性質(zhì)例:求的z變換。7.1.4、z變換性質(zhì)4.初值定理5.終值定理
假設(shè)當(dāng)k<0時(shí)f(k)=0,它的z變換F(z)的所有極點(diǎn)都在單位圓內(nèi),可能的例外是在單位圓上z=1處有單極點(diǎn)。7.1.4、z變換性質(zhì)例:如果的z變換由下式給出,試確定其初始值f(0)。例:用終值定理確定下式的終值f()。7.1.4、z變換性質(zhì)小結(jié)-z變換方法與性質(zhì)z變換的部分分式法z變換的留數(shù)法Z變換線性性質(zhì)z變換實(shí)數(shù)、復(fù)數(shù)位移定理z變換初值、終值定理7.1.5、z反變換z變換在離散控制系統(tǒng)中所起的作用與拉氏變換在連續(xù)控制相同中所起的作用是同樣的。z反變換的符號(hào)為。F(z)的z反變換產(chǎn)生相應(yīng)的時(shí)間序列f(k)。注意:由z反變換獲得的僅是在采樣瞬時(shí)的時(shí)間序列。因而,F(xiàn)(z)的z反變換獲得的僅是單值的f(k),而不是單值的f(t)。Z反變換的方法
1部分分式法(查表法)
2冪級(jí)數(shù)法(綜合除法)
3留數(shù)法(反演積分法)首先,對(duì)F(z)的分母多項(xiàng)式進(jìn)行因式分解,并求其極點(diǎn):注意:若分母和分子多項(xiàng)式的系數(shù)都是實(shí)數(shù)的話,那么任何一個(gè)復(fù)數(shù)極點(diǎn)或復(fù)數(shù)零點(diǎn),都分別伴有共扼復(fù)數(shù)的極點(diǎn)或零點(diǎn)。7.1.5、z反變換-部分分式法當(dāng)F(z)的極點(diǎn)全部是低階極點(diǎn),并且至少有一個(gè)零點(diǎn)是在坐標(biāo)原點(diǎn)(即bm=0)時(shí),一般采用的反變換求解步驟是,用z去除F(z)表達(dá)式的兩端,然后將F(z)/z展開成部分分式。展開后的F(z)/z,將是下列形式單極點(diǎn)7.1.5、z反變換-部分分式法若F(z)/z有多重極點(diǎn),例如,在處有二重極點(diǎn)且無(wú)其他極點(diǎn),那么F(z)/z將有如下形式:二重極點(diǎn)7.1.5、z反變換-部分分式法例:試求F(z)反變換f(k)。解:7.1.5、z反變換-部分分式法例:已知z變換式中,a為常數(shù),且T為采樣周期,試用部分分式展開法求解它的z反變換f(kT)。解:7.1.5、z反變換-部分分式法例:已知z變換求解它的z反變換f(kT)。注意:在z=0處,F(xiàn)(z)有雙重極點(diǎn)。7.1.5、z反變換-部分分式法7.1.5、z反變換-部分分式法7.1.6、z反變換-冪級(jí)數(shù)法把F(z)展開成z-1的無(wú)窮冪級(jí)數(shù),以獲取z反變換。特點(diǎn):在確定z反變換閉合表達(dá)式較困難的場(chǎng)合,以及只求取f(k)的前幾項(xiàng)時(shí),直接除法是很有效的。例:試求F(z)反變換f(k),k=0,1,2,3,4將F(z)寫成的多項(xiàng)式之比7.1.6、z反變換-冪級(jí)數(shù)法由上例可見,如果僅僅希望求取序列的前幾項(xiàng),直接除法可用手算來(lái)實(shí)現(xiàn)。直接除法一般不產(chǎn)生f(k)的閉合表達(dá)式。7.1.6、z反變換-冪級(jí)數(shù)法若f(t)的z變換為F(z),則例:7.1.6、z反變換-冪級(jí)數(shù)法例:求的z反變換。解:7.1.6、z反變換-冪級(jí)數(shù)法7.1.7、關(guān)于z變換的說(shuō)明z
變換是對(duì)連續(xù)信號(hào)的采樣序列進(jìn)行變換,因此z
變換與原連續(xù)時(shí)間函數(shù)并非一一對(duì)應(yīng),而只是與采樣序列相對(duì)應(yīng)。z變換的非唯一性z變換的收斂區(qū)間對(duì)于拉氏變換,其存在的條件是下列絕對(duì)積分收斂:z
變換也有存在性問(wèn)題,通常,z
變換定義為令因?yàn)閯t若上式滿足,則z變換一致收斂,的z變換存在。上述級(jí)數(shù)收斂的條件是:于是則有若令,工程中通常有它是單邊的,且為有理分式函數(shù)。所以,
z變換的收斂區(qū)間與的零極點(diǎn)分布有關(guān)。7.1.7、關(guān)于z變換的說(shuō)明發(fā)散區(qū)收斂區(qū)|a|Z平面ImRe例如:上式只有當(dāng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年新型建筑施工中介服務(wù)協(xié)議版B版
- 2024-2030年中國(guó)客戶關(guān)系管理系統(tǒng)項(xiàng)目可行性研究報(bào)告
- 2024-2030年中國(guó)天然橡膠行業(yè)發(fā)展分析及投資風(fēng)險(xiǎn)研究報(bào)告
- 2024-2030年中國(guó)復(fù)合保溫銅水管融資商業(yè)計(jì)劃書
- 2024-2030年中國(guó)基金小鎮(zhèn)行業(yè)運(yùn)營(yíng)管理模式分析及投資規(guī)劃研究報(bào)告版
- 眉山藥科職業(yè)學(xué)院《有限元基礎(chǔ)與應(yīng)用實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年煤礦物資供應(yīng)合同范本
- 呂梁學(xué)院《行為生態(tài)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年版簡(jiǎn)單建設(shè)工程結(jié)算協(xié)議書模板
- 2025水上運(yùn)輸合同范本
- 【MOOC】大學(xué)攝影-河南理工大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 執(zhí)紀(jì)審查業(yè)務(wù)專題培訓(xùn)
- 音樂(lè)著作權(quán)授權(quán)合同模板
- 信息安全意識(shí)培訓(xùn)課件
- Python試題庫(kù)(附參考答案)
- 道法第二單元 成長(zhǎng)的時(shí)空 單元測(cè)試 2024-2025學(xué)年統(tǒng)編版道德與法治七年級(jí)上冊(cè)
- MOOC 理解馬克思-南京大學(xué) 中國(guó)大學(xué)慕課答案
- 海洋的前世今生智慧樹知到期末考試答案2024年
- 預(yù)算與預(yù)算法課件
- 用友銀企聯(lián)云服務(wù)ppt課件
- 同城票據(jù)結(jié)算業(yè)務(wù)
評(píng)論
0/150
提交評(píng)論