四川省南充市順慶區(qū)2023年中考數學模擬精編試卷含解析及點睛_第1頁
四川省南充市順慶區(qū)2023年中考數學模擬精編試卷含解析及點睛_第2頁
四川省南充市順慶區(qū)2023年中考數學模擬精編試卷含解析及點睛_第3頁
四川省南充市順慶區(qū)2023年中考數學模擬精編試卷含解析及點睛_第4頁
四川省南充市順慶區(qū)2023年中考數學模擬精編試卷含解析及點睛_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列成語描述的事件為隨機事件的是()A.水漲船高B.守株待兔C.水中撈月D.緣木求魚2.“a是實數,”這一事件是()A.不可能事件 B.不確定事件 C.隨機事件 D.必然事件3.將弧長為2πcm、圓心角為120°的扇形圍成一個圓錐的側面,則這個圓錐的高是()A.cm B.2cm C.2cm D.cm4.不等式組的解集是()A.x>-1 B.x>3C.-1<x<3 D.x<35.如圖,在△ABC中,AB=AC,∠A=30°,AB的垂直平分線l交AC于點D,則∠CBD的度數為()A.30° B.45° C.50° D.75°6.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數關系的圖象大致是()A. B.C. D.7.若分式有意義,則a的取值范圍為()A.a≠4 B.a>4 C.a<4 D.a=48.用6個相同的小正方體搭成一個幾何體,若它的俯視圖如圖所示,則它的主視圖不可能是()A. B. C. D.9.如圖,空心圓柱體的左視圖是()A. B. C. D.10.下列實數中,有理數是()A. B. C.π D.11.如圖,在平面直角坐標系中,半徑為2的圓P的圓心P的坐標為(﹣3,0),將圓P沿x軸的正方向平移,使得圓P與y軸相切,則平移的距離為()A.1 B.3 C.5 D.1或512.在下列二次函數中,其圖象的對稱軸為的是A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,平行線AB、CD被直線EF所截,若∠2=130°,則∠1=_____.14.如圖,用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽,則這個紙帽的高是_____cm.15.寫出一個一次函數,使它的圖象經過第一、三、四象限:______.16.比較大?。篲____.(填“<“,“=“,“>“)17.如圖,在△ABC中,∠C=90°,AC=8,BC=6,點D是AB的中點,點E在邊AC上,將△ADE沿DE翻折,使點A落在點A′處,當A′E⊥AC時,A′B=____.18.已知一次函數y=ax+b的圖象如圖所示,根據圖中信息請寫出不等式ax+b≥2的解集為___________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某校組織學生去9km外的郊區(qū)游玩,一部分學生騎自行車先走,半小時后,其他學生乘公共汽車出發(fā),結果他們同時到達.己知公共汽車的速度是自行車速度的3倍,求自行車的速度和公共汽車的速度分別是多少?20.(6分)某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數與用150元購進乙種玩具的件數相同.求每件甲種、乙種玩具的進價分別是多少元?商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數少于乙種玩具的件數,商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?21.(6分)如圖,已知直線AB與軸交于點C,與雙曲線交于A(3,)、B(-5,)兩點.AD⊥軸于點D,BE∥軸且與軸交于點E.求點B的坐標及直線AB的解析式;判斷四邊形CBED的形狀,并說明理由.22.(8分)某高科技產品開發(fā)公司現有員工50名,所有員工的月工資情況如下表:員工管理人員普通工作人員人員結構總經理部門經理科研人員銷售人員高級技工中級技工勤雜工員工數(名)1323241每人月工資(元)2100084002025220018001600950請你根據上述內容,解答下列問題:該公司“高級技工”有名;所有員工月工資的平均數x為2500元,中位數為元,眾數為元;小張到這家公司應聘普通工作人員.請你回答右圖中小張的問題,并指出用(2)中的哪個數據向小張介紹員工的月工資實際水平更合理些;去掉四個管理人員的工資后,請你計算出其他員工的月平均工資(結果保留整數),并判斷能否反映該公司員工的月工資實際水平.23.(8分)已知拋物線F:y=x1+bx+c的圖象經過坐標原點O,且與x軸另一交點為(﹣33(1)求拋物線F的解析式;(1)如圖1,直線l:y=33x+m(m>0)與拋物線F相交于點A(x1,y1)和點B(x1,y1)(點A在第二象限),求y1﹣y1(3)在(1)中,若m=43①判斷△AA′B的形狀,并說明理由;②平面內是否存在點P,使得以點A、B、A′、P為頂點的四邊形是菱形?若存在,求出點P的坐標;若不存在,請說明理由.24.(10分)如圖,在平面直角坐標系中,拋物線與x軸交于點A、B,與y軸交于點C,直線y=x+4經過點A、C,點P為拋物線上位于直線AC上方的一個動點.(1)求拋物線的表達式;(2)如圖,當CP//AO時,求∠PAC的正切值;(3)當以AP、AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上時,求出此時點P的坐標.25.(10分)某商場服裝部分為了解服裝的銷售情況,統(tǒng)計了每位營業(yè)員在某月的銷售額(單位:萬元),并根據統(tǒng)計的這組銷售額的數據,繪制出如下的統(tǒng)計圖①和圖②,請根據相關信息,解答下列問題:(1)該商場服裝營業(yè)員的人數為,圖①中m的值為;(2)求統(tǒng)計的這組銷售額數據的平均數、眾數和中位數.26.(12分)某商場將進價40元一個的某種商品按50元一個售出時,每月能賣出500個.商場想了兩個方案來增加利潤:方案一:提高價格,但這種商品每個售價漲價1元,銷售量就減少10個;方案二:售價不變,但發(fā)資料做廣告.已知當這種商品每月的廣告費用為m(千元)時,每月銷售量將是原銷售量的p倍,且p=.試通過計算,請你判斷商場為賺得更大的利潤應選擇哪種方案?請說明你判斷的理由!27.(12分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB邊的延長線于點F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題解析:水漲船高是必然事件,A不正確;守株待兔是隨機事件,B正確;水中撈月是不可能事件,C不正確緣木求魚是不可能事件,D不正確;故選B.考點:隨機事件.2、D【解析】是實數,||一定大于等于0,是必然事件,故選D.3、B【解析】

由弧長公式可求解圓錐母線長,再由弧長可求解圓錐底面半徑長,再運用勾股定理即可求解圓錐的高.【詳解】解:設圓錐母線長為Rcm,則2π=,解得R=3cm;設圓錐底面半徑為rcm,則2π=2πr,解得r=1cm.由勾股定理可得圓錐的高為=2cm.故選擇B.【點睛】本題考查了圓錐的概念和弧長的計算.4、B【解析】

根據解不等式組的方法可以求得原不等式組的解集.【詳解】,解不等式①,得x>-1,解不等式②,得x>1,由①②可得,x>1,故原不等式組的解集是x>1.故選B.【點睛】本題考查解一元一次不等式組,解題的關鍵是明確解一元一次不等式組的方法.5、B【解析】試題解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分線交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故選B.6、A【解析】

此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數關系式即可.【詳解】解:設CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數關系由函數關系式可看出A中的函數圖象與所求的分段函數對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關系,重點是列出函數關系式,但需注意自變量的取值范圍.7、A【解析】

分式有意義時,分母a-4≠0【詳解】依題意得:a?4≠0,解得a≠4.故選:A【點睛】此題考查分式有意義的條件,難度不大8、D【解析】分析:根據主視圖和俯視圖之間的關系可以得出答案.詳解:∵主視圖和俯視圖的長要相等,∴只有D選項中的長和俯視圖不相等,故選D.點睛:本題主要考查的就是三視圖的畫法,屬于基礎題型.三視圖的畫法為:主視圖和俯視圖的長要相等;主視圖和左視圖的高要相等;左視圖和俯視圖的寬要相等.9、C【解析】

根據從左邊看得到的圖形是左視圖,可得答案.【詳解】從左邊看是三個矩形,中間矩形的左右兩邊是虛線,故選C.【點睛】本題考查了簡單幾何體的三視圖,從左邊看得到的圖形是左視圖.10、B【解析】

實數分為有理數,無理數,有理數有分數、整數,無理數有根式下不能開方的,等,很容易選擇.【詳解】A、二次根2不能正好開方,即為無理數,故本選項錯誤,

B、無限循環(huán)小數為有理數,符合;

C、為無理數,故本選項錯誤;

D、不能正好開方,即為無理數,故本選項錯誤;故選B.【點睛】本題考查的知識點是實數范圍內的有理數的判斷,解題關鍵是從實際出發(fā)有理數有分數,自然數等,無理數有、根式下開不盡的從而得到了答案.11、D【解析】

分圓P在y軸的左側與y軸相切、圓P在y軸的右側與y軸相切兩種情況,根據切線的判定定理解答.【詳解】當圓P在y軸的左側與y軸相切時,平移的距離為3-2=1,當圓P在y軸的右側與y軸相切時,平移的距離為3+2=5,故選D.【點睛】本題考查的是切線的判定、坐標與圖形的變化-平移問題,掌握切線的判定定理是解題的關鍵,解答時,注意分情況討論思想的應用.12、A【解析】y=(x+2)2的對稱軸為x=–2,A正確;y=2x2–2的對稱軸為x=0,B錯誤;y=–2x2–2的對稱軸為x=0,C錯誤;y=2(x–2)2的對稱軸為x=2,D錯誤.故選A.1.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、50°【解析】

利用平行線的性質推出∠EFC=∠2=130°,再根據鄰補角的性質即可解決問題.【詳解】∵AB∥CD,∴∠EFC=∠2=130°,∴∠1=180°-∠EFC=50°,故答案為50°【點睛】本題考查平行線的性質、鄰補角的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考基礎題.14、【解析】

先求出扇形弧長,再求出圓錐的底面半徑,再根據勾股定理即可出圓錐的高.【詳解】圓心角為120°,半徑為6cm的扇形的弧長為4cm∴圓錐的底面半徑為2,故圓錐的高為=4cm【點睛】此題主要考查圓的弧長及圓錐的底面半徑,解題的關鍵是熟知圓的相關公式.15、y=x﹣1(答案不唯一)【解析】一次函數圖象經過第一、三、四象限,則可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1(答案不唯一).16、<【解析】

先比較它們的平方,進而可比較與的大小.【詳解】()2=80,()2=100,∵80<100,∴<.故答案為:<.【點睛】本題考查了實數的大小比較,帶二次根號的實數,在比較它們的大小時,通常先比較它們的平方的大小.17、或7【解析】

分兩種情況:①如圖1,作輔助線,構建矩形,先由勾股定理求斜邊AB=10,由中點的定義求出AD和BD的長,證明四邊形HFGB是矩形,根據同角的三角函數列式可以求DG和DF的長,并由翻折的性質得:∠DA'E=∠A,A'D=AD=5,由矩形性質和勾股定理可以得出結論:A'B=;②如圖2,作輔助線,構建矩形A'MNF,同理可以求出A'B的長.【詳解】解:分兩種情況:如圖1,過D作DG⊥BC與G,交A'E與F,過B作BH⊥A'E與H,D為AB的中點,BD=AB=AD,∠C=,AC=8,BC=6,AB=10,BD=AD=5,sin∠ABC=,DG=4,由翻折得:∠DA'E=∠A,A'D=AD=5,sin∠DA'E=sin∠A=.DF=3,FG=4-3=1,A'E⊥AC,BC⊥AC,A'E//BC,∠HFG+∠DGB=,∠DGB=,∠HFG=,∠EHB=,四邊形HFGB是矩形,BH=FG=1,同理得:A'E=AE=8-1=7,A'H=A'E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A'B=.如圖2,過D作MN//AC,交BC與于N,過A'作A'F//AC,交BC的延長線于F,延長A'E交直線DN于M,A'E⊥AC,A'M⊥MN,A'E⊥A'F,∠M=∠MA'F=,∠ACB=,∠F=∠ACB=,四邊形MA'FN県矩形,MN=A'F,FN=A'M,由翻折得:A'D=AD=5,Rt△A'MD中,DM=3,A'M=4,FN=A'M=4,Rt△BDN中,BD=5,DN=4,BN=3,A'F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A'B=;綜上所述,A'B的長為或.故答案為:或.【點睛】本題主要考查三角形翻轉后的性質,注意不同的情況需分情況討論.18、x≥1.【解析】試題分析:根據題意得當x≥1時,ax+b≥2,即不等式ax+b≥2的解集為x≥1.故答案為x≥1.考點:一次函數與一元一次不等式.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、自行車的速度是12km/h,公共汽車的速度是1km/h.【解析】

設自行車的速度為xkm/h,則公共汽車的速度為3xkm/h,根據題意得:,解分式方程即可.【詳解】解:設自行車的速度為xkm/h,則公共汽車的速度為3xkm/h,根據題意得:,解得:x=12,經檢驗,x=12是原分式方程的解,∴3x=1.答:自行車的速度是12km/h,公共汽車的速度是1km/h.【點睛】本題考核知識點:列分式方程解應用題.解題關鍵點:找出相等關系,列出方程.20、(1)甲,乙兩種玩具分別是15元/件,1元/件;(2)共有四種方案.【解析】

(1)設甲種玩具進價x元/件,則乙種玩具進價為(40﹣x)元/件,根據已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數與用150元購進乙種玩具的件數相同可列方程求解.(2)設購進甲種玩具y件,則購進乙種玩具(48﹣y)件,根據甲種玩具的件數少于乙種玩具的件數,商場決定此次進貨的總資金不超過1000元,可列出不等式組求解.【詳解】解:設甲種玩具進價x元/件,則乙種玩具進價為(40﹣x)元/件,x=15,經檢驗x=15是原方程的解.∴40﹣x=1.甲,乙兩種玩具分別是15元/件,1元/件;(2)設購進甲種玩具y件,則購進乙種玩具(48﹣y)件,,解得20≤y<2.因為y是整數,甲種玩具的件數少于乙種玩具的件數,∴y取20,21,22,23,共有4種方案.考點:分式方程的應用;一元一次不等式組的應用.21、(1)點B的坐標是(-5,-4);直線AB的解析式為:(2)四邊形CBED是菱形.理由見解析【解析】

(1)根據反比例函數圖象上點的坐標特征,將點A代入雙曲線方程求得k值,即利用待定系數法求得雙曲線方程;然后將B點代入其中,從而求得a值;設直線AB的解析式為y=mx+n,將A、B兩點的坐標代入,利用待定系數法解答;(2)由點C、D的坐標、已知條件“BE∥x軸”及兩點間的距離公式求得,CD=5,BE=5,且BE∥CD,從而可以證明四邊形CBED是平行四邊形;然后在Rt△OED中根據勾股定理求得ED=5,所以ED=CD,從而證明四邊形CBED是菱形.【詳解】解:(1)∵雙曲線過A(3,),∴.把B(-5,)代入,得.∴點B的坐標是(-5,-4)設直線AB的解析式為,將A(3,)、B(-5,-4)代入得,,解得:.∴直線AB的解析式為:(2)四邊形CBED是菱形.理由如下:點D的坐標是(3,0),點C的坐標是(-2,0).∵BE∥軸,∴點E的坐標是(0,-4).而CD=5,BE=5,且BE∥CD.∴四邊形CBED是平行四邊形在Rt△OED中,ED2=OE2+OD2,∴ED==5,∴ED=CD.∴□CBED是菱形22、(1)16人;(2)工中位數是1700元;眾數是1600元;(3)用1700元或1600元來介紹更合理些.(4)能反映該公司員工的月工資實際水平.【解析】

(1)用總人數50減去其它部門的人數;(2)根據中位數和眾數的定義求解即可;(3)由平均數、眾數、中位數的特征可知,平均數易受極端數據的影響,用眾數和中位數映該公司員工的月工資實際水平更合適些;(4)去掉極端數據后平均數可以反映該公司員工的月工資實際水平.【詳解】(1)該公司“高級技工”的人數=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工資數從小到大排列,第25和第26分別是:1600元和1800元,因而中位數是1700元;在這些數中1600元出現的次數最多,因而眾數是1600元;(3)這個經理的介紹不能反映該公司員工的月工資實際水平.用1700元或1600元來介紹更合理些.(4)(元).能反映該公司員工的月工資實際水平.23、(1)y=x1+33x;(1)y1﹣y1=233π;(3)①△AA′B為等邊三角形,理由見解析;②平面內存在點P,使得以點A、B、A′、P為頂點的四邊形是菱形,點P的坐標為(13,23)、(﹣【解析】

(1)根據點的坐標,利用待定系數法即可求出拋物線F的解析式;(1)將直線l的解析式代入拋物線F的解析式中,可求出x1、x1的值,利用一次函數圖象上點的坐標特征可求出y1、y1的值,做差后即可得出y1-y1的值;(3)根據m的值可得出點A、B的坐標,利用對稱性求出點A′的坐標.①利用兩點間的距離公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B為等邊三角形;②根據等邊三角形的性質結合菱形的性質,可得出存在符合題意得點P,設點P的坐標為(x,y),分三種情況考慮:(i)當A′B為對角線時,根據菱形的性質(對角線互相平分)可求出點P的坐標;(ii)當AB為對角線時,根據菱形的性質(對角線互相平分)可求出點P的坐標;(iii)當AA′為對角線時,根據菱形的性質(對角線互相平分)可求出點P的坐標.綜上即可得出結論.【詳解】(1)∵拋物線y=x1+bx+c的圖象經過點(0,0)和(﹣33∴c=013-∴拋物線F的解析式為y=x1+33(1)將y=33x+m代入y=x1+33x,得:x解得:x1=﹣π,x1=π,∴y1=﹣133π+m,y1=∴y1﹣y1=(133π+m)﹣(﹣13(3)∵m=43∴點A的坐標為(﹣233,23∵點A′是點A關于原點O的對稱點,∴點A′的坐標為(233,﹣①△AA′B為等邊三角形,理由如下:∵A(﹣233,23),B(233∴AA′=83,AB=83,A′B=∴AA′=AB=A′B,∴△AA′B為等邊三角形.②∵△AA′B為等邊三角形,∴存在符合題意的點P,且以點A、B、A′、P為頂點的菱形分三種情況,設點P的坐標為(x,y).(i)當A′B為對角線時,有x-2解得x=2∴點P的坐標為(13,23(ii)當AB為對角線時,有x=-2解得:x=-2∴點P的坐標為(﹣233,(iii)當AA′為對角線時,有x=-2解得:x=-2∴點P的坐標為(﹣23綜上所述:平面內存在點P,使得以點A、B、A′、P為頂點的四邊形是菱形,點P的坐標為(13,23)、(﹣233【點睛】本題考查了待定系數法求二次函數解析式、一次函數圖象上點的坐標特征、等邊三角形的判定與性質以及菱形的判定與性質,解題的關鍵是:(1)根據點的坐標,利用待定系數法求出二次函數解析式;(1)將一次函數解析式代入二次函數解析式中求出x1、x1的值;(3)①利用勾股定理(兩點間的距離公式)求出AB、AA′、A′B的值;②分A′B為對角線、AB為對角線及AA′為對角線三種情況求出點P的坐標.24、(1)拋物線的表達式為;(2);(3)P點的坐標是.【解析】

分析:(1)由題意易得點A、C的坐標分別為(-1,0),(0,1),將這兩點坐標代入拋物線列出方程組,解得b、c的值即可求得拋物線的解析式;(2)如下圖,作PH⊥AC于H,連接OP,由已知條件先求得PC=2,AC=,結合S△APC,可求得PH=,再由OA=OC得到∠CAO=15°,結合CP∥OA可得∠PCA=15°,即可得到CH=PH=,由此可得AH=,這樣在Rt△APH中由tan∠PAC=即可求得所求答案了;(3)如圖,當四邊形AOPQ為符合要求的平行四邊形時,則此時PQ=AO=1,且點P、Q關于拋物線的對稱軸x=-1對稱,由此可得點P的橫坐標為-3,代入拋物線解析即可求得此時的點P的坐標.詳解:(1)∵直線y=x+1經過點A、C,點A在x軸上,點C在y軸上∴A點坐標是(﹣1,0),點C坐標是(0,1),又∵拋物線過A,C兩點,∴解得,∴拋物線的表達式為;(2)作PH⊥AC于H,∵點C、P在拋物線上,CP//AO,C(0,1),A(-1,0)∴P(-2,1),AC=,∴PC=2,,∴PH=,∵A(﹣1,0),C(0,1),∴∠CAO=15°.∵CP//AO,∴∠ACP=∠CAO=15°,∵PH⊥AC,∴CH=PH=,∴.∴;(3)∵,∴拋物線的對稱軸為直線,∵以AP,AO為鄰邊的平行四邊形的第四個頂點Q恰好也在拋物線上,∴PQ∥AO,且PQ=AO=1.∵P,Q都在拋物線上,∴P,Q關于直線對稱,∴P點的橫坐標是﹣3,∵當x=﹣3時,,∴P點的坐標是.點睛:(1)解第2小題的關鍵是:作出如圖所示的輔助線,構造出Rt△APH,并結合題中的已知條件求出PH和AH的長;(2)解第3小題的關鍵是:根據題意畫出符合要求的示意圖,并由PQ∥AO,PQ=AO及P、Q關于拋物線的對稱軸對稱得到點P的橫坐標.【詳解】請在此輸入詳解!25、(1)25;28;(2)平均數:1.2;眾數:3;中位數:1.【解析】

(1)觀察統(tǒng)計圖可得,該商場

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論