版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在矩形AOBC中,O為坐標原點,OA、OB分別在x軸、y軸上,點B的坐標為(0,3),∠ABO=30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標為()A.(,) B.(2,) C.(,) D.(,3﹣)2.若α,β是一元二次方程3x2+2x-9=0的兩根,則的值是(
).A. B.- C.- D.3.為了增強學生體質,學校發(fā)起評選“健步達人”活動,小明用計步器記錄自己一個月(30天)每天走的步數,并繪制成如下統(tǒng)計表:步數(萬步)1.01.21.11.41.3天數335712在每天所走的步數這組數據中,眾數和中位數分別是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.44.河堤橫斷面如圖所示,堤高BC=6米,迎水坡AB的坡比為1:,則AB的長為A.12米 B.4米 C.5米 D.6米5.如圖由四個相同的小立方體組成的立體圖像,它的主視圖是().A. B. C. D.6.如圖是由幾個相同的小正方體搭成的一個幾何體,它的俯視圖是()A.B.C.D.7.據國家統(tǒng)計局2018年1月18日公布,2017年我國GDP總量為827122億元,首次登上80萬億元的門檻,數據827122億元用科學記數法表示為()A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×10148.|﹣3|=()A. B.﹣ C.3 D.﹣39.下列幾何體是棱錐的是()A. B. C. D.10.估計的值在()A.0到l之間 B.1到2之間 C.2到3之間 D.3到4之間11.式子有意義的x的取值范圍是()A.且x≠1 B.x≠1 C. D.且x≠112.已知:如圖,在平面直角坐標系xOy中,等邊△AOB的邊長為6,點C在邊OA上,點D在邊AB上,且OC=3BD,反比例函數y=(k≠0)的圖象恰好經過點C和點D,則k的值為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.觀察以下一列數:3,,,,,…則第20個數是_____.14.計算:______.15.函數y=中,自變量x的取值范圍為_____.16.某校體育室里有球類數量如下表:球類籃球排球足球數量354如果隨機拿出一個球(每一個球被拿出來的可能性是一樣的),那么拿出一個球是足球的可能性是_____.17.“若實數a,b,c滿足a<b<c,則a+b<c”,能夠說明該命題是假命題的一組a,b,c的值依次為_____.18.如圖,△ABC三邊的中線AD,BE,CF的公共點G,若,則圖中陰影部分面積是.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,-3),動點P在拋物線上.(1)b=_________,c=_________,點B的坐標為_____________;(直接填寫結果)(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.20.(6分)如圖,在中,,平分,交于點,點在上,經過兩點,交于點,交于點.求證:是的切線;若的半徑是,是弧的中點,求陰影部分的面積(結果保留和根號).21.(6分)如果一條拋物線與軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.(1)“拋物線三角形”一定是三角形;(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點為對稱中心的矩形?若存在,求出過三點的拋物線的表達式;若不存在,說明理由.22.(8分)近日,深圳市人民政府發(fā)布了《深圳市可持續(xù)發(fā)展規(guī)劃》,提出了要做可持續(xù)發(fā)展的全球創(chuàng)新城市的目標,某初中學校了解學生的創(chuàng)新意識,組織了全校學生參加創(chuàng)新能力大賽,從中抽取了部分學生成績,分為5組:A組50~60;B組60~70;C組70~80;D組80~90;E組90~100,統(tǒng)計后得到如圖所示的頻數分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖.抽取學生的總人數是人,扇形C的圓心角是°;補全頻數直方圖;該校共有2200名學生,若成績在70分以下(不含70分)的學生創(chuàng)新意識不強,有待進一步培養(yǎng),則該校創(chuàng)新意識不強的學生約有多少人?23.(8分)如圖,海中有一個小島A,該島四周11海里范圍內有暗礁.有一貨輪在海面上由西向正東方向航行,到達B處時它在小島南偏西60°的方向上,再往正東方向行駛10海里后恰好到達小島南偏西45°方向上的點C處.問:如果貨輪繼續(xù)向正東方向航行,是否會有觸礁的危險?(參考數據:≈1.41,≈1.73)24.(10分)在矩形ABCD中,AB=6,AD=8,點E是邊AD上一點,EM⊥EC交AB于點M,點N在射線MB上,且AE是AM和AN的比例中項.如圖1,求證:∠ANE=∠DCE;如圖2,當點N在線段MB之間,聯結AC,且AC與NE互相垂直,求MN的長;連接AC,如果△AEC與以點E、M、N為頂點所組成的三角形相似,求DE的長.25.(10分)已知:如圖1,拋物線的頂點為M,平行于x軸的直線與該拋物線交于點A,B(點A在點B左側),根據對稱性△AMB恒為等腰三角形,我們規(guī)定:當△AMB為直角三角形時,就稱△AMB為該拋物線的“完美三角形”.(1)①如圖2,求出拋物線的“完美三角形”斜邊AB的長;②拋物線與的“完美三角形”的斜邊長的數量關系是;(2)若拋物線的“完美三角形”的斜邊長為4,求a的值;(3)若拋物線的“完美三角形”斜邊長為n,且的最大值為-1,求m,n的值.26.(12分)如圖,點A、B、C、D在同一條直線上,CE∥DF,EC=BD,AC=FD,求證:AE=FB.27.(12分)小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關數據如圖2.(參考數據:sin37°=
,cos37°=
,tan37°=
)
(1)求把手端點A到BD的距離;
(2)求CH的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】解:∵四邊形AOBC是矩形,∠ABO=10°,點B的坐標為(0,),∴AC=OB=,∠CAB=10°,∴BC=AC?tan10°=×=1.∵將△ABC沿AB所在直線對折后,點C落在點D處,∴∠BAD=10°,AD=.過點D作DM⊥x軸于點M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴點D的坐標為(,).故選A.2、C【解析】分析:根據根與系數的關系可得出α+β=-、αβ=-3,將其代入=中即可求出結論.詳解:∵α、β是一元二次方程3x2+2x-9=0的兩根,∴α+β=-,αβ=-3,∴===.故選C.點睛:本題考查了根與系數的關系,牢記兩根之和等于-、兩根之積等于是解題的關鍵.3、B【解析】
在這組數據中出現次數最多的是1.1,得到這組數據的眾數;把這組數據按照從小到大的順序排列,第15、16個數的平均數是中位數.【詳解】在這組數據中出現次數最多的是1.1,即眾數是1.1.要求一組數據的中位數,把這組數據按照從小到大的順序排列,第15、16個兩個數都是1.1,所以中位數是1.1.故選B.【點睛】本題考查一組數據的中位數和眾數,在求中位數時,首先要把這列數字按照從小到大或從的大到小排列,找出中間一個數字或中間兩個數字的平均數即為所求.4、A【解析】
試題分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故選A.【詳解】請在此輸入詳解!5、D【解析】從正面看,共2列,左邊是1個正方形,右邊是2個正方形,且下齊.故選D.6、D【解析】試題分析:俯視圖是從上面看到的圖形.從上面看,左邊和中間都是2個正方形,右上角是1個正方形,故選D.考點:簡單組合體的三視圖7、B【解析】
由科學記數法的定義可得答案.【詳解】解:827122億即82712200000000,用科學記數法表示為8.27122×1013,故選B.【點睛】科學記數法表示數的標準形式為(<10且n為整數).8、C【解析】
根據絕對值的定義解答即可.【詳解】|-3|=3故選:C【點睛】本題考查的是絕對值,理解絕對值的定義是關鍵.9、D【解析】分析:根據棱錐的概念判斷即可.A是三棱柱,錯誤;B是圓柱,錯誤;C是圓錐,錯誤;D是四棱錐,正確.故選D.點睛:本題考查了立體圖形的識別,關鍵是根據棱錐的概念判斷.10、B【解析】∵9<11<16,∴,∴故選B.11、A【解析】根據二次根式被開方數必須是非負數和分式分母不為0的條件,要使在實數范圍內有意義,必須且.故選A.12、A【解析】試題分析:過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,如圖所示.設BD=a,則OC=3a.∵△AOB為邊長為1的等邊三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE==a,∴點C(a,a).同理,可求出點D的坐標為(1﹣a,a).∵反比例函數(k≠0)的圖象恰好經過點C和點D,∴k=a×a=(1﹣a)×a,∴a=,k=.故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
觀察已知數列得到一般性規(guī)律,寫出第20個數即可.【詳解】解:觀察數列得:第n個數為,則第20個數是.故答案為.【點睛】本題考查了規(guī)律型:數字的變化類,弄清題中的規(guī)律是解答本題的關鍵.14、【解析】原式==.故答案為:.15、x≠1.【解析】
該函數是分式,分式有意義的條件是分母不等于0,故分母x-1≠0,解得x的范圍.【詳解】根據題意得:x?1≠0,解得:x≠1.故答案為x≠1.【點睛】本題考查了函數自變量的取值范圍,解題的關鍵是熟練的掌握分式的意義.16、【解析】
先求出球的總數,再用足球數除以總數即為所求.【詳解】解:一共有球3+5+4=12(個),其中足球有4個,∴拿出一個球是足球的可能性=.【點睛】本題考查了概率,屬于簡單題,熟悉概率概念,列出式子是解題關鍵.17、答案不唯一,如1,2,3;【解析】分析:設a,b,c是任意實數.若a<b<c,則a+b<c”是假命題,則若a<b<c,則a+b≥c”是真命題,舉例即可,本題答案不唯一詳解:設a,b,c是任意實數.若a<b<c,則a+b<c”是假命題,則若a<b<c,則a+b≥c”是真命題,可設a,b,c的值依次1,2,3,(答案不唯一),故答案為1,2,3.點睛:本題考查了命題的真假,舉例說明即可,18、4【解析】試題分析:由中線性質,可得AG=2GD,則,∴陰影部分的面積為4;其實圖中各個單獨小三角形面積都相等本題雖然超綱,但學生容易蒙對的.考點:中線的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1),,(-1,0);(2)存在P的坐標是或;(1)當EF最短時,點P的坐標是:(,)或(,)【解析】
(1)將點A和點C的坐標代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標;(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據垂線段最短可求得點D的縱坐標,從而得到點P的縱坐標,然后由拋物線的解析式可求得點P的坐標.【詳解】解:(1)∵將點A和點C的坐標代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當∠ACP1=90°.由(1)可知點A的坐標為(1,0).設AC的解析式為y=kx﹣1.∵將點A的坐標代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯立解得,(舍去),∴點P1的坐標為(1,﹣4).②當∠P2AC=90°時.設AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯立解得=﹣2,=1(舍去),∴點P2的坐標為(﹣2,5).綜上所述,P的坐標是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據垂線段最短,可得當OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標是,∴,解得:x=,∴當EF最短時,點P的坐標是:(,)或(,).20、(1)證明見解析;(2)【解析】
(1)連接OD,根據角平分線的定義和等腰三角形的性質可得∠ADO=∠CAD,即可證明OD//AC,進而可得∠ODB=90°,即可得答案;(2)根據圓周角定理可得弧弧弧,即可證明∠BOD=60°,在中,利用∠BOD的正切值可求出BD的長,利用S陰影=S△BOD-S扇形DOE即可得答案.【詳解】(1)連接∵平分,∴,∵,∴,∴,∴OD//AC,∴,∴又是的半徑,∴是的切線(2)由題意得∵是弧的中點∴弧弧∵∴弧弧∴弧弧弧∴在中∵∴.【點睛】本題考查的是切線的判定、圓周角定理及扇形面積,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可;在同圓或等圓中,同弧或等弧所對的圓周角相等,都定義這條弧所對的圓心角的一半.熟練掌握相關定理及公式是解題關鍵.21、(1)等腰(2)(3)存在,【解析】解:(1)等腰(2)∵拋物線的“拋物線三角形”是等腰直角三角形,∴該拋物線的頂點滿足.∴.(3)存在.如圖,作△與△關于原點中心對稱,則四邊形為平行四邊形.當時,平行四邊形為矩形.又∵,∴△為等邊三角形.作,垂足為.∴.∴.∴.∴,.∴,.設過點三點的拋物線,則解之,得∴所求拋物線的表達式為.22、(1)300、144;(2)補全頻數分布直方圖見解析;(3)該校創(chuàng)新意識不強的學生約有528人.【解析】
(1)由D組頻數及其所占比例可得總人數,用360°乘以C組人數所占比例可得;
(2)用總人數分別乘以A、B組的百分比求得其人數,再用總人數減去A、B、C、D的人數求得E組的人數可得;
(3)用總人數乘以樣本中A、B組的百分比之和可得.【詳解】解:(1)抽取學生的總人數為78÷26%=300人,扇形C的圓心角是360°×=144°,故答案為300、144;(2)A組人數為300×7%=21人,B組人數為300×17%=51人,則E組人數為300﹣(21+51+120+78)=30人,補全頻數分布直方圖如下:(3)該校創(chuàng)新意識不強的學生約有2200×(7%+17%)=528人.【點睛】考查了頻數(率)分布直方圖:提高讀頻數分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.也考查了用樣本估計總體.23、不會有觸礁的危險,理由見解析.【解析】分析:作AH⊥BC,由∠CAH=45°,可設AH=CH=x,根據可得關于x的方程,解之可得.詳解:過點A作AH⊥BC,垂足為點H.由題意,得∠BAH=60°,∠CAH=45°,BC=1.設AH=x,則CH=x.在Rt△ABH中,∵,解得:.∵13.65>11,∴貨輪繼續(xù)向正東方向航行,不會有觸礁的危險.點睛:本題考查了解直角三角形的應用﹣方向角問題,解一般三角形的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.24、(1)見解析;(2);(1)DE的長分別為或1.【解析】
(1)由比例中項知,據此可證△AME∽△AEN得∠AEM=∠ANE,再證∠AEM=∠DCE可得答案;(2)先證∠ANE=∠EAC,結合∠ANE=∠DCE得∠DCE=∠EAC,從而知,據此求得AE=8﹣=,由(1)得∠AEM=∠DCE,據此知,求得AM=,由求得MN=;(1)分∠ENM=∠EAC和∠ENM=∠ECA兩種情況分別求解可得.【詳解】解:(1)∵AE是AM和AN的比例中項∴,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC與NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴,∵DC=AB=6,AD=8,∴DE=,∴AE=8﹣=,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴,∴AM=,∵,∴AN=,∴MN=;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,當△AEC與以點E、M、N為頂點所組成的三角形相似時①∠ENM=∠EAC,如圖2,∴∠ANE=∠EAC,由(2)得:DE=;②∠ENM=∠ECA,如圖1,過點E作EH⊥AC,垂足為點H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=,設DE=1x,則HE=1x,AH=4x,AE=5x,又AE+DE=AD,∴5x+1x=8,解得x=1,∴DE=1x=1,綜上所述,DE的長分別為或1.【點睛】本題是相似三角形的綜合問題,解題的關鍵是掌握相似三角形的判定與性質、三角函數的應用等知識點.25、(1)AB=2;相等;(2)a=±;(3),.【解析】
(1)①過點B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,設出點B的坐標為(n,-n),根據二次函數得出n的值,然后得出AB的值,②因為拋物線y=x2+1與y=x2的形狀相同,所以拋物線y=x2+1與y=x2的“完美三角形”的斜邊長的數量關系是相等;(2)根據拋物線的性質相同得出拋物線的完美三角形全等,從而得出點B的坐標,得出a的值;根據最大值得出mn-4m-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年協(xié)議條款參考模板系列一
- SaaS服務定制協(xié)議模板2024
- 2024教師招聘教師資格考試面試說課稿小學體育單杠
- 寫秋天的早晨的句子
- 2024年度正式員工加入協(xié)議樣本
- 內架班組承包合同范本
- 關于青春 演講稿
- 封陽臺施工專項服務協(xié)議范本2024
- 房產中介服務協(xié)議2024年詳盡條款
- 齊魯工業(yè)大學《MATLAB仿真技術》2022-2023學年期末試卷
- 2024-2025學年高二英語選擇性必修第二冊(譯林版)UNIT 4 Grammar and usage教學課件
- 二十屆三中全會精神學習試題及答案(100題)
- 義務教育語文課程標準(2022年版)考試題庫及答案1
- 2024-2030年中國四足機器人行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 消化系統(tǒng)常見疾病課件(完美版)
- 成人重癥患者人工氣道濕化護理專家共識 解讀
- 關于進一步加強路基路面施工質量的通知
- 部編人教版道德與法治五年級上冊全冊課件設計
- 人教版數學五年級上冊《實際問題與方程(例3)》說課稿
- -投標技術標書范文模板-人員配備與團隊構建
- 四害消殺服務合同協(xié)議(2024版)
評論
0/150
提交評論