版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.2.已知函數(shù),的圖象與直線的兩個(gè)相鄰交點(diǎn)的距離等于,則的一條對(duì)稱軸是()A. B. C. D.3.橢圓的焦點(diǎn)為,點(diǎn)在橢圓上,若,則的大小為()A. B. C. D.4.函數(shù)的部分圖像大致為()A. B.C. D.5.如圖,是圓的一條直徑,為半圓弧的兩個(gè)三等分點(diǎn),則()A. B. C. D.6.圓心為且和軸相切的圓的方程是()A. B.C. D.7.已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于軸對(duì)稱,則的最小值是()A. B. C. D.8.下列選項(xiàng)中,說(shuō)法正確的是()A.“”的否定是“”B.若向量滿足,則與的夾角為鈍角C.若,則D.“”是“”的必要條件9.已知的值域?yàn)椋?dāng)正數(shù)a,b滿足時(shí),則的最小值為()A. B.5 C. D.910.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.11.已知函數(shù)(e為自然對(duì)數(shù)底數(shù)),若關(guān)于x的不等式有且只有一個(gè)正整數(shù)解,則實(shí)數(shù)m的最大值為()A. B. C. D.12.若集合,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.邊長(zhǎng)為2的菱形中,與交于點(diǎn)O,E是線段的中點(diǎn),的延長(zhǎng)線與相交于點(diǎn)F,若,則______.14.已知等邊三角形的邊長(zhǎng)為1.,點(diǎn)、分別為線段、上的動(dòng)點(diǎn),則取值的集合為__________.15.能說(shuō)明“若對(duì)于任意的都成立,則在上是減函數(shù)”為假命題的一個(gè)函數(shù)是________.16.已知曲線,點(diǎn),在曲線上,且以為直徑的圓的方程是.則_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)記為數(shù)列的前項(xiàng)和,已知,等比數(shù)列滿足,.(1)求的通項(xiàng)公式;(2)求的前項(xiàng)和.18.(12分)如圖,四棱錐中,側(cè)面為等腰直角三角形,平面.(1)求證:平面;(2)求直線與平面所成的角的正弦值.19.(12分)如圖,在四棱柱中,底面是正方形,平面平面,,.過(guò)頂點(diǎn),的平面與棱,分別交于,兩點(diǎn).(Ⅰ)求證:;(Ⅱ)求證:四邊形是平行四邊形;(Ⅲ)若,試判斷二面角的大小能否為?說(shuō)明理由.20.(12分)已知矩陣不存在逆矩陣,且非零特低值對(duì)應(yīng)的一個(gè)特征向量,求的值.21.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn),,證明:.22.(10分)已知數(shù)列的前項(xiàng)和和通項(xiàng)滿足.(1)求數(shù)列的通項(xiàng)公式;(2)已知數(shù)列中,,,求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長(zhǎng)為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點(diǎn)睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意球心的確定.2.D【解析】
由題,得,由的圖象與直線的兩個(gè)相鄰交點(diǎn)的距離等于,可得最小正周期,從而求得,得到函數(shù)的解析式,又因?yàn)楫?dāng)時(shí),,由此即可得到本題答案.【詳解】由題,得,因?yàn)榈膱D象與直線的兩個(gè)相鄰交點(diǎn)的距離等于,所以函數(shù)的最小正周期,則,所以,當(dāng)時(shí),,所以是函數(shù)的一條對(duì)稱軸,故選:D【點(diǎn)睛】本題主要考查利用和差公式恒等變形,以及考查三角函數(shù)的周期性和對(duì)稱性.3.C【解析】
根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結(jié)論.【詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【點(diǎn)睛】本題考查橢圓的定義,考查余弦定理,考查運(yùn)算能力,屬于基礎(chǔ)題.4.A【解析】
根據(jù)函數(shù)解析式,可知的定義域?yàn)椋ㄟ^(guò)定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項(xiàng),觀察選項(xiàng)的圖象,可知代入,解得,排除選項(xiàng),即可得出答案.【詳解】解:因?yàn)?,所以的定義域?yàn)椋瑒t,∴為偶函數(shù),圖象關(guān)于軸對(duì)稱,排除選項(xiàng),且當(dāng)時(shí),,排除選項(xiàng),所以正確.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式識(shí)別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進(jìn)行排除.5.B【解析】
連接、,即可得到,,再根據(jù)平面向量的數(shù)量積及運(yùn)算律計(jì)算可得;【詳解】解:連接、,,是半圓弧的兩個(gè)三等分點(diǎn),,且,所以四邊形為棱形,.故選:B【點(diǎn)睛】本題考查平面向量的數(shù)量積及其運(yùn)算律的應(yīng)用,屬于基礎(chǔ)題.6.A【解析】
求出所求圓的半徑,可得出所求圓的標(biāo)準(zhǔn)方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.【點(diǎn)睛】本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計(jì)算能力,屬于基礎(chǔ)題.7.A【解析】
化簡(jiǎn)為,求出它的圖象向左平移個(gè)單位長(zhǎng)度后的圖象的函數(shù)表達(dá)式,利用所得到的圖象關(guān)于軸對(duì)稱列方程即可求得,問(wèn)題得解?!驹斀狻亢瘮?shù)可化為:,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,又所得到的圖象關(guān)于軸對(duì)稱,所以,解得:,即:,又,所以.故選:A.【點(diǎn)睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質(zhì)等知識(shí),考查轉(zhuǎn)化能力,屬于中檔題。8.D【解析】
對(duì)于A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,即可判斷出;對(duì)于B若向量滿足,則與的夾角為鈍角或平角;對(duì)于C當(dāng)m=0時(shí),滿足am2≤bm2,但是a≤b不一定成立;對(duì)于D根據(jù)元素與集合的關(guān)系即可做出判斷.【詳解】選項(xiàng)A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,因此A不正確;選項(xiàng)B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項(xiàng)C當(dāng)m=0時(shí),滿足am2≤bm2,但是a≤b不一定成立,因此不正確;選項(xiàng)D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【點(diǎn)睛】本題考查命題的真假判斷與應(yīng)用,涉及知識(shí)點(diǎn)有含有量詞的命題的否定、不等式性質(zhì)、向量夾角與性質(zhì)、集合性質(zhì)等,屬于簡(jiǎn)單題.9.A【解析】
利用的值域?yàn)?求出m,再變形,利用1的代換,即可求出的最小值.【詳解】解:∵的值域?yàn)?∴,∴,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào),∴的最小值為.故選:A.【點(diǎn)睛】本題主要考查了對(duì)數(shù)復(fù)合函數(shù)的值域運(yùn)用,同時(shí)也考查了基本不等式中“1的運(yùn)用”,屬于中檔題.10.C【解析】
由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長(zhǎng)為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長(zhǎng)為,如圖:由底面邊長(zhǎng)可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點(diǎn)睛】本題考查了多面體的內(nèi)切球與外接球問(wèn)題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.11.A【解析】
若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,利用導(dǎo)數(shù)求出的最小值,分別畫出與的圖象,結(jié)合圖象可得.【詳解】解:,∴,設(shè),∴,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,∴,當(dāng)時(shí),,當(dāng),,函數(shù)恒過(guò)點(diǎn),分別畫出與的圖象,如圖所示,,若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,∴且,即,且∴,故實(shí)數(shù)m的最大值為,故選:A【點(diǎn)睛】本題考查考查了不等式恒有一正整數(shù)解問(wèn)題,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學(xué)運(yùn)算能力.12.A【解析】
先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點(diǎn)睛】本題考查求集合的交集運(yùn)算,掌握交集定義是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
取基向量,,然后根據(jù)三點(diǎn)共線以及向量加減法運(yùn)算法則將,表示為基向量后再相乘可得.【詳解】如圖:設(shè),又,且存在實(shí)數(shù)使得,,,,,,故答案為:.【點(diǎn)睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運(yùn)算,屬中檔題.14.【解析】
根據(jù)題意建立平面直角坐標(biāo)系,設(shè)三角形各點(diǎn)的坐標(biāo),依題意求出,,,的表達(dá)式,再進(jìn)行數(shù)量積的運(yùn)算,最后求和即可得出結(jié)果.【詳解】解:以的中點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,線段的垂直平分線為軸建立平面直角坐標(biāo)系,如圖所示,則,,,,則,,,設(shè),,,即點(diǎn)的坐標(biāo)為,則,,,所以故答案為:【點(diǎn)睛】本題考查平面向量的坐標(biāo)表示和線性運(yùn)算,以及平面向量基本定理和數(shù)量積的運(yùn)算,是中檔題.15.答案不唯一,如【解析】
根據(jù)對(duì)基本函數(shù)的理解可得到滿足條件的函數(shù).【詳解】由題意,不妨設(shè),則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說(shuō)明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.【點(diǎn)睛】本題考查對(duì)基本初等函數(shù)的圖像和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個(gè)在上不是單調(diào)遞減的函數(shù),再檢驗(yàn)是否滿足命題中的條件,屬基礎(chǔ)題.16.【解析】
設(shè)所在直線方程為設(shè)?點(diǎn)坐標(biāo)分別為,,都在上,代入曲線方程,兩式作差可得,從而可得直線的斜率,聯(lián)立直線與的方程,由,利用弦長(zhǎng)公式即可求解.【詳解】因?yàn)槭菆A的直徑,必過(guò)圓心點(diǎn),設(shè)所在直線方程為設(shè)?點(diǎn)坐標(biāo)分別為,,都在上,故兩式相減,可得(因?yàn)槭堑闹悬c(diǎn)),即聯(lián)立直線與的方程:又,即,即又因?yàn)椋瑒t有即∴.故答案為:【點(diǎn)睛】本題考查了直線與圓錐曲線的位置關(guān)系、弦長(zhǎng)公式,考查了學(xué)生的計(jì)算能力,綜合性比較強(qiáng),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)當(dāng)時(shí),;當(dāng)時(shí),.【解析】
(1)利用數(shù)列與的關(guān)系,求得;(2)由(1)可得:,,算出公比,利用等比數(shù)列的前項(xiàng)和公式求出.【詳解】(1)當(dāng)時(shí),,當(dāng)時(shí),,因?yàn)檫m合上式,所以.(2)由(1)得,,設(shè)等比數(shù)列的公比為,則,解得,當(dāng)時(shí),,當(dāng)時(shí),.【點(diǎn)睛】本題主要考查數(shù)列與的關(guān)系、等比數(shù)列的通項(xiàng)公式、前項(xiàng)和公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力..18.(1)見解析(2)【解析】
(1)根據(jù)平面,利用線面垂直的定義可得,再由,根據(jù)線面垂直的判定定理即可證出.(2)取的中點(diǎn),連接,以為坐標(biāo)原點(diǎn),分別為正半軸建立空間直角坐標(biāo)系求出平面的一個(gè)法向量,利用空間向量法即可求解.【詳解】因?yàn)槠矫嫫矫?,所以由為等腰直角三角形,所以又,故平?取的中點(diǎn),連接,因?yàn)?,所以因?yàn)槠矫妫云矫嫠云矫嫒鐖D,以為坐標(biāo)原點(diǎn),分別為正半軸建立空間直角坐標(biāo)系則,又,所以且于是設(shè)平面的法向量為,則令得平面的一個(gè)法向量設(shè)直線與平面所成的角為,則【點(diǎn)睛】本題考查了線面垂直的定義、判定定理以及空間向量法求線面角,屬于中檔題.19.(1)證明見解析;(2)證明見解析;(3)不能為.【解析】
(1)由平面平面,可得平面,從而證明;(2)由平面與平面沒有交點(diǎn),可得與不相交,又與共面,所以,同理可證,得證;(3)作交于點(diǎn),延長(zhǎng)交于點(diǎn),連接,根據(jù)三垂線定理,確定二面角的平面角,若,,由大角對(duì)大邊知,兩者矛盾,故二面角的大小不能為.【詳解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個(gè)平面沒有交點(diǎn),則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(3)不能.如圖,作交于點(diǎn),延長(zhǎng)交于點(diǎn),連接,由,,,所以平面,則平面,又,根據(jù)三垂線定理,得到,所以是二面角的平面角,若,則是等腰直角三角形,,又,所以中,由大角對(duì)大邊知,所以,這與上面相矛盾,所以二面角的大小不能為.【點(diǎn)睛】本題考查了立體幾何中的線線平行和垂直的判定問(wèn)題,和二面角的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,屬中檔題.20.【解析】
由不存在逆矩陣,可得,再利用特征多項(xiàng)式求出特征值3,0,,利用矩陣乘法運(yùn)算即可.【詳解】因?yàn)椴淮嬖谀婢仃?,,所?矩陣的特征多項(xiàng)式為,令,則
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年網(wǎng)絡(luò)安全服務(wù)合同標(biāo)的質(zhì)量驗(yàn)收
- 2024模具行業(yè)數(shù)據(jù)分析與共享合同
- 2024日常建筑設(shè)施維修維護(hù)及改造合同范本2篇
- 2024年鏟車安全操作規(guī)程合同
- 2024慈善捐贈(zèng)協(xié)議書
- 2024正畸治療新型材料研發(fā)與應(yīng)用合作合同3篇
- 2024年種羊遺傳材料交換合同3篇
- 2024房地產(chǎn)廣告設(shè)計(jì)服務(wù)合同
- 2025年度文化旅游資源開發(fā)合同6篇
- 2024房地產(chǎn)買賣保密協(xié)議合同范本
- GB/T 30306-2024家用和類似用途飲用水處理濾芯
- 職業(yè)技術(shù)學(xué)院食品檢驗(yàn)檢測(cè)技術(shù)專業(yè)課程標(biāo)準(zhǔn)(2023級(jí))
- 08D800-5 民用建筑電氣設(shè)計(jì)與施工 常用電氣設(shè)備安裝與控制
- 餐飲顧問(wèn)合作協(xié)議
- 新教材牛津譯林版高中英語(yǔ)必修第二冊(cè)全冊(cè)各單元重點(diǎn)語(yǔ)法精講
- 兩課 說(shuō)課 單相橋式整流電路分析(獲獎(jiǎng))
- 新能源居間合同協(xié)議書范本
- 福建省福州市鼓樓實(shí)驗(yàn)小學(xué)教育集團(tuán)2023-2024學(xué)年五年級(jí)下學(xué)期期中英語(yǔ)試題
- 九年級(jí)英語(yǔ)校本作業(yè)(合訂)
- 九江市第一中學(xué)2024年高考數(shù)學(xué)一模試卷含解析
- (2024年)室內(nèi)足球場(chǎng)照明設(shè)計(jì)(足球場(chǎng)燈光照明方案)
評(píng)論
0/150
提交評(píng)論