版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是國家統(tǒng)計局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯誤的是()A.2019年12月份,全國居民消費價格環(huán)比持平B.2018年12月至2019年12月全國居民消費價格環(huán)比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格2.已知實數(shù)滿足,則的最小值為()A. B. C. D.3.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.4.以下三個命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進行某項指標(biāo)檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關(guān)系”的把握越大;其中真命題的個數(shù)為()A.3 B.2 C.1 D.05.設(shè),分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.6.設(shè)函數(shù)的定義域為,命題:,的否定是()A., B.,C., D.,7.點在曲線上,過作軸垂線,設(shè)與曲線交于點,,且點的縱坐標(biāo)始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數(shù)為()A.0 B.1 C.2 D.38.如圖所示,三國時代數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(米粒大小忽略不計,?。?,則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.1089.若將函數(shù)的圖象上各點橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)在上單調(diào)遞增 B.函數(shù)的周期是C.函數(shù)的圖象關(guān)于點對稱 D.函數(shù)在上最大值是110.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,D是AB的中點,若,且,則面積的最大值是()A. B. C. D.11.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題12.若復(fù)數(shù)滿足,則()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在區(qū)間(-∞,1)上遞增,則實數(shù)a的取值范圍是____14.某高中共有1800人,其中高一、高二、高三年級的人數(shù)依次成等差數(shù)列,現(xiàn)用分層抽樣的方法從中抽取60人,那么高二年級被抽取的人數(shù)為________.15.如圖是九位評委打出的分?jǐn)?shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均分為_______.16.若函數(shù)在區(qū)間上有且僅有一個零點,則實數(shù)的取值范圍有___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學(xué)”的口號,鼓勵學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績與線上學(xué)習(xí)時間之間的相關(guān)關(guān)系,對高三年級隨機選取45名學(xué)生進行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學(xué)平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計線上學(xué)習(xí)時間不少于5小時419線上學(xué)習(xí)時間不足5小時合計45(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)”;(2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時間不足5小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);②若將頻率視為概率,從全校高三該次檢測數(shù)學(xué)成績不少于120分的學(xué)生中隨機抽取20人,求這些人中每周線上學(xué)習(xí)時間不少于5小時的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)18.(12分)已知函數(shù).(1)當(dāng)時,解不等式;(2)設(shè)不等式的解集為,若,求實數(shù)的取值范圍.19.(12分)的內(nèi)角,,的對邊分別是,,,已知.(1)求角;(2)若,,求的面積.20.(12分)已知橢圓:()的離心率為,且橢圓的一個焦點與拋物線的焦點重合.過點的直線交橢圓于,兩點,為坐標(biāo)原點.(1)若直線過橢圓的上頂點,求的面積;(2)若,分別為橢圓的左、右頂點,直線,,的斜率分別為,,,求的值.21.(12分)某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個開學(xué)季進了160盒該產(chǎn)品,以(單位:盒,)表示這個開學(xué)季內(nèi)的市場需求量,(單位:元)表示這個開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.(1)根據(jù)直方圖估計這個開學(xué)季內(nèi)市場需求量的平均數(shù)和眾數(shù);(2)將表示為的函數(shù);(3)以需求量的頻率作為各需求量的概率,求開學(xué)季利潤不少于4800元的概率.22.(10分)如圖,在棱長為的正方形中,,分別為,邊上的中點,現(xiàn)以為折痕將點旋轉(zhuǎn)至點的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先對圖表數(shù)據(jù)的分析處理,再結(jié)簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環(huán)比是負(fù)的,所以B錯誤;設(shè)2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D【點睛】此題考查了對圖表數(shù)據(jù)的分析處理能力及進行簡單的合情推理,屬于中檔題.2、A【解析】
所求的分母特征,利用變形構(gòu)造,再等價變形,利用基本不等式求最值.【詳解】解:因為滿足,則,當(dāng)且僅當(dāng)時取等號,故選:.【點睛】本題考查通過拼湊法利用基本不等式求最值.拼湊法的實質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵.(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(biāo)(3)拆項、添項應(yīng)注意檢驗利用基本不等式的前提.3、D【解析】
根據(jù)三視圖判斷出幾何體為正四棱錐,由此計算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側(cè)面的高為,所以側(cè)面積為.所以該幾何體的表面積是.故選:D【點睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計算,屬于基礎(chǔ)題.4、C【解析】
根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關(guān)系數(shù)的性質(zhì),可判斷②;根據(jù)獨立性檢驗的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無明顯差異,故①應(yīng)是系統(tǒng)抽樣,即①為假命題;②兩個隨機變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1;兩個隨機變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對值越接近于0;故②為真命題;③對分類變量與的隨機變量的觀測值來說,越小,“與有關(guān)系”的把握程度越小,故③為假命題.故選:.【點睛】本題以命題的真假判斷為載體考查了抽樣方法、相關(guān)系數(shù)、獨立性檢驗等知識點,屬于基礎(chǔ)題.5、C【解析】
根據(jù)表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構(gòu)造出關(guān)系,求出離心率.【詳解】設(shè),則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關(guān)系,構(gòu)造出關(guān)系,得到離心率.屬于中檔題.6、D【解析】
根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D【點睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.7、C【解析】
設(shè),則,則,即可得,設(shè),利用導(dǎo)函數(shù)判斷的零點的個數(shù),即為所求.【詳解】設(shè),則,所以,依題意可得,設(shè),則,當(dāng)時,,則單調(diào)遞減;當(dāng)時,,則單調(diào)遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數(shù)為2.故選:C【點睛】本題考查利用導(dǎo)函數(shù)處理零點問題,考查向量的坐標(biāo)運算,考查零點存在性定理的應(yīng)用.8、B【解析】
根據(jù)幾何概型的概率公式求出對應(yīng)面積之比即可得到結(jié)論.【詳解】解:設(shè)大正方形的邊長為1,則小直角三角形的邊長為,
則小正方形的邊長為,小正方形的面積,
則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,
故選:B.【點睛】本題主要考查幾何概型的概率的應(yīng)用,求出對應(yīng)的面積之比是解決本題的關(guān)鍵.9、A【解析】
根據(jù)三角函數(shù)伸縮變換特點可得到解析式;利用整體對應(yīng)的方式可判斷出在上單調(diào)遞增,正確;關(guān)于點對稱,錯誤;根據(jù)正弦型函數(shù)最小正周期的求解可知錯誤;根據(jù)正弦型函數(shù)在區(qū)間內(nèi)值域的求解可判斷出最大值無法取得,錯誤.【詳解】將橫坐標(biāo)縮短到原來的得:當(dāng)時,在上單調(diào)遞增在上單調(diào)遞增,正確;的最小正周期為:不是的周期,錯誤;當(dāng)時,,關(guān)于點對稱,錯誤;當(dāng)時,此時沒有最大值,錯誤.本題正確選項:【點睛】本題考查正弦型函數(shù)的性質(zhì),涉及到三角函數(shù)的伸縮變換、正弦型函數(shù)周期性、單調(diào)性和對稱性、正弦型函數(shù)在一段區(qū)間內(nèi)的值域的求解;關(guān)鍵是能夠靈活應(yīng)用整體對應(yīng)的方式,通過正弦函數(shù)的圖象來判斷出所求函數(shù)的性質(zhì).10、A【解析】
根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點,且,,即,即,,當(dāng)且僅當(dāng)時,等號成立.的面積,所以面積的最大值為.故選:.【點睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運算,屬于中檔題.11、D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.12、D【解析】
把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)模的求法.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)復(fù)合函數(shù)單調(diào)性同增異減,結(jié)合二次函數(shù)的性質(zhì)、對數(shù)型函數(shù)的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數(shù)的性質(zhì)和復(fù)合函數(shù)的單調(diào)性可得解得.故答案為:【點睛】本小題主要考查根據(jù)對數(shù)型復(fù)合函數(shù)的單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.14、【解析】
由三個年級人數(shù)成等差數(shù)列和總?cè)藬?shù)可求得高二年級共有人,根據(jù)抽樣比可求得結(jié)果.【詳解】設(shè)高一、高二、高三人數(shù)分別為,則且,解得:,用分層抽樣的方法抽取人,那么高二年級被抽取的人數(shù)為人.故答案為:.【點睛】本題考查分層抽樣問題的求解,涉及到等差數(shù)列的相關(guān)知識,屬于基礎(chǔ)題.15、1【解析】
寫出莖葉圖對應(yīng)的所有的數(shù),去掉最高分,最低分,再求平均分.【詳解】解:所有的數(shù)為:77,78,82,84,84,86,88,93,94,共9個數(shù),去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個數(shù),平均分為,故答案為1.【點睛】本題考查莖葉圖及平均數(shù)的計算,屬于基礎(chǔ)題.16、或【解析】
函數(shù)的零點方程的根,求出方程的兩根為,,從而可得或,即或.【詳解】函數(shù)在區(qū)間的零點方程在區(qū)間的根,所以,解得:,,因為函數(shù)在區(qū)間上有且僅有一個零點,所以或,即或.【點睛】本題考查函數(shù)的零點與方程根的關(guān)系,在求含絕對值方程時,要注意對絕對值內(nèi)數(shù)的正負(fù)進行討論.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)填表見解析;有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)”(2)①詳見解析②期望;方差【解析】
(1)完成列聯(lián)表,代入數(shù)據(jù)即可判斷;(2)利用分層抽樣可得的取值,進而得到概率,列出分布列;根據(jù)分析知,計算出期望與方差.【詳解】(1)分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計線上學(xué)習(xí)時間不少于5小時15419線上學(xué)習(xí)時間不足5小時101626合計252045有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)”.(2)①由分層抽樣知,需要從不足120分的學(xué)生中抽取人,的可能取值為0,1,2,3,4,,,,,所以,的分布列:②從全校不少于120分的學(xué)生中隨機抽取1人,此人每周上線時間不少于5小時的概率為,設(shè)從全校不少于120分的學(xué)生中隨機抽取20人,這些人中每周線上學(xué)習(xí)時間不少于5小時的人數(shù)為,則,故,.【點睛】本題考查了獨立性檢驗與離散型隨機變量的分布列、數(shù)學(xué)期望與方差的計算問題,屬于基礎(chǔ)題.18、(1)或;(2)【解析】
(1)使用零點分段法,討論分段的取值范圍,然后取它們的并集,可得結(jié)果.(2)利用等價轉(zhuǎn)化的思想,可得不等式在恒成立,然后解出解集,根據(jù)集合間的包含關(guān)系,可得結(jié)果.【詳解】(1)當(dāng)時,原不等式可化為.①當(dāng)時,則,所以;②當(dāng)時,則,所以;⑧當(dāng)時,則,所以.綜上所述:當(dāng)時,不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實數(shù)的取值范圍是.【點睛】本題考查零點分段求解含絕對值不等式,熟練使用分類討論的方法,以及知識的交叉應(yīng)用,同時掌握等價轉(zhuǎn)化的思想,屬中檔題.19、(1)(2)【解析】
(1)利用余弦定理可求,從而得到的值.(2)利用誘導(dǎo)公式和正弦定理化簡題設(shè)中的邊角關(guān)系可得,得到值后利用面積公式可求.【詳解】(1)由,得.所以由余弦定理,得.又因為,所以.(2)由,得.由正弦定理,得,因為,所以.又因,所以.所以的面積.【點睛】在解三角形中,如果題設(shè)條件是關(guān)于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設(shè)條件是關(guān)于邊的齊次式或是關(guān)于內(nèi)角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設(shè)條件是邊和角的混合關(guān)系式,那么我們也可把這種關(guān)系式轉(zhuǎn)化為角的關(guān)系式或邊的關(guān)系式.20、(1)(2)【解析】
(1)根據(jù)拋物線的焦點求得橢圓的焦點,由此求得,結(jié)合橢圓離心率求得,進而求得,從而求得橢圓的標(biāo)準(zhǔn)方程,求得橢圓上頂點的坐標(biāo),由此求得直線的方程.聯(lián)立直線的方程和橢圓方程,求得兩點的縱坐標(biāo),由此求得的面積.(2)求得兩點的坐標(biāo),設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達定理,由此求得的值,根據(jù)在橢圓上求得的值,由此求得的值.【詳解】(1)因為拋物線的焦點坐標(biāo)為,所以橢圓的右焦點的坐標(biāo)為,所以,因為橢圓的離心率為,所以,解得,所以,故橢圓的標(biāo)準(zhǔn)方程為.其上頂點為,所以直線:,聯(lián)立,消去整理得,解得,,所以的面積.(2)由題知,,,設(shè),.由題還可知,直線的斜率不為0,故可設(shè):.由,消去,得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 土豆粉店加盟協(xié)議
- 影視制作人員聘用合同模板
- 課外輔導(dǎo)教師合同模板
- 買房代持協(xié)議
- 員工離職報告(集錦15篇)
- 部門競聘演講稿錦集9篇
- 鋼琴培訓(xùn)的心得體會
- 幼兒園小朋友合作制度
- 上海財經(jīng)大學(xué)《精密與超精密加工》2023-2024學(xué)年第一學(xué)期期末試卷
- 年度考核登記表個人工作總結(jié)
- 天津市南開區(qū)2023-2024學(xué)年四年級上學(xué)期期末英語試題
- 初中語文部編版七年級上冊期末復(fù)習(xí)詞語成語運用練習(xí)題(附參考答案)
- 專題四“挺膺擔(dān)當(dāng)”主題團課
- 新高考3+1+2改革情況詳細(xì)講解課件
- 思維訓(xùn)練——對折問題實用教案
- 學(xué)習(xí)和記憶——腦科學(xué)簡介
- 重大第八版三年級上信息技術(shù)期末試題
- eviews軟件對于我國城鎮(zhèn)居民消費性支出和可支配收入的分析
- 2022年檔案管理員資格考試題庫及答案-精簡版
- CA6140型車床電氣控制線路的檢修
- 堿爐安裝淺談
評論
0/150
提交評論