2023屆貴州省銅仁市德江縣第二中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第1頁
2023屆貴州省銅仁市德江縣第二中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第2頁
2023屆貴州省銅仁市德江縣第二中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第3頁
2023屆貴州省銅仁市德江縣第二中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第4頁
2023屆貴州省銅仁市德江縣第二中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲乙兩人有三個不同的學(xué)習(xí)小組,,可以參加,若每人必須參加并且僅能參加一個學(xué)習(xí)小組,則兩人參加同一個小組的概率為()A.B.C.D.2.若平面向量,滿足,則的最大值為()A. B. C. D.3.的圖象如圖所示,,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是()A. B. C. D.4.若數(shù)列滿足且,則使的的值為()A. B. C. D.5.已知實數(shù),滿足約束條件,則目標(biāo)函數(shù)的最小值為A. B.C. D.6.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內(nèi)角是第一象限角或第二象限角;③若命題,,則命題,;④設(shè)集合,,則“”是“”的必要條件;其中正確命題的個數(shù)是()A. B. C. D.7.已知全集,集合,則=()A. B.C. D.8.已知集合,,,則集合()A. B. C. D.9.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點,點P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或510.如圖所示的程序框圖,若輸入,,則輸出的結(jié)果是()A. B. C. D.11.已知整數(shù)滿足,記點的坐標(biāo)為,則點滿足的概率為()A. B. C. D.12.函數(shù)的圖象大致為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正四棱柱中,,.若是側(cè)面內(nèi)的動點,且,則與平面所成角的正切值的最大值為___________.14.已知為偶函數(shù),當(dāng)時,,則__________.15.已知向量滿足,且,則_________.16.設(shè),滿足約束條件,則的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,設(shè)點為橢圓的右焦點,圓過且斜率為的直線交圓于兩點,交橢圓于點兩點,已知當(dāng)時,(1)求橢圓的方程.(2)當(dāng)時,求的面積.18.(12分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點為極點,x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為.(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)設(shè)點,直線l與曲線C交于不同的兩點A、B,求的值.19.(12分)已知函數(shù)有兩個零點.(1)求的取值范圍;(2)是否存在實數(shù),對于符合題意的任意,當(dāng)時均有?若存在,求出所有的值;若不存在,請說明理由.20.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.21.(12分)如圖,四棱錐,側(cè)面是邊長為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動點,且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.22.(10分)已知動圓E與圓外切,并與直線相切,記動圓圓心E的軌跡為曲線C.(1)求曲線C的方程;(2)過點的直線l交曲線C于A,B兩點,若曲線C上存在點P使得,求直線l的斜率k的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】依題意,基本事件的總數(shù)有種,兩個人參加同一個小組,方法數(shù)有種,故概率為.2、C【解析】

可根據(jù)題意把要求的向量重新組合成已知向量的表達,利用向量數(shù)量積的性質(zhì),化簡為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達是本題的關(guān)鍵點.本題屬中檔題.3、B【解析】

根據(jù)圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后的函數(shù)解析式,結(jié)合題意可得出關(guān)于的等式,即可得出結(jié)果.【詳解】由圖象可得,函數(shù)的最小正周期為,,,則,,取,,則,,,可得,當(dāng)時,.故選:B.【點睛】本題考查利用圖象求函數(shù)解析式,同時也考查了利用函數(shù)圖象變換求參數(shù),考查計算能力,屬于中等題.4、C【解析】因為,所以是等差數(shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.5、B【解析】

作出不等式組對應(yīng)的平面區(qū)域,目標(biāo)函數(shù)的幾何意義為動點到定點的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對應(yīng)的平面區(qū)域如圖:目標(biāo)函數(shù)的幾何意義為動點到定點的斜率,當(dāng)位于時,此時的斜率最小,此時.故選B.【點睛】本題主要考查線性規(guī)劃的應(yīng)用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.6、B【解析】

①利用真假表來判斷,②考慮內(nèi)角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關(guān)系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當(dāng)內(nèi)角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎(chǔ)題.7、D【解析】

先計算集合,再計算,最后計算.【詳解】解:,,.故選:.【點睛】本題主要考查了集合的交,補混合運算,注意分清集合間的關(guān)系,屬于基礎(chǔ)題.8、D【解析】

根據(jù)集合的混合運算,即可容易求得結(jié)果.【詳解】,故可得.故選:D.【點睛】本題考查集合的混合運算,屬基礎(chǔ)題.9、B【解析】

根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎(chǔ)題.10、B【解析】

列舉出循環(huán)的每一步,可得出輸出結(jié)果.【詳解】,,不成立,,;不成立,,;不成立,,;成立,輸出的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結(jié)果,一般要將算法的每一步列舉出來,考查計算能力,屬于基礎(chǔ)題.11、D【解析】

列出所有圓內(nèi)的整數(shù)點共有37個,滿足條件的有7個,相除得到概率.【詳解】因為是整數(shù),所以所有滿足條件的點是位于圓(含邊界)內(nèi)的整數(shù)點,滿足條件的整數(shù)點有共37個,滿足的整數(shù)點有7個,則所求概率為.故選:.【點睛】本題考查了古典概率的計算,意在考查學(xué)生的應(yīng)用能力.12、D【解析】

由題可得函數(shù)的定義域為,因為,所以函數(shù)為奇函數(shù),排除選項B;又,,所以排除選項A、C,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、2.【解析】

如圖,以為原點建立空間直角坐標(biāo)系,設(shè)點,由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點建立空間直角坐標(biāo)系,設(shè)點,則,,又,得即;又平面,為與平面所成角,令,當(dāng)時,最大,即與平面所成角的正切值的最大值為2.故答案為:2【點睛】本題主要考查了立體幾何中的動點問題,考查了直線與平面所成角的計算.對于這類題,一般是建立空間直角坐標(biāo),在動點坐標(biāo)內(nèi)引入?yún)?shù),將最值問題轉(zhuǎn)化為函數(shù)的最值問題求解,考查了學(xué)生的運算求解能力和直觀想象能力.14、【解析】

由偶函數(shù)的性質(zhì)直接求解即可【詳解】.故答案為【點睛】本題考查函數(shù)的奇偶性,對數(shù)函數(shù)的運算,考查運算求解能力15、【解析】

由數(shù)量積的運算律求得,再由數(shù)量積的定義可得結(jié)論.【詳解】由題意,∴,即,∴.故答案為:.【點睛】本題考查求向量的夾角,掌握數(shù)量積的定義與運算律是解題關(guān)鍵.16、29【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為以原點為圓心的圓,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標(biāo)函數(shù)是以原點為圓心,以為半徑的圓,由圖可知,此圓經(jīng)過點A時,半徑最大,此時也最大,最大值為.所以本題答案為29.【點睛】線性規(guī)劃問題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標(biāo)函數(shù)的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)先求出圓心到直線的距離為,再根據(jù)得到,解之即得a的值,再根據(jù)c=1求出b的值得到橢圓的方程.(2)先求出,,再求得的面積.【詳解】(1)因為直線過點,且斜率.所以直線的方程為,即,所以圓心到直線的距離為,又因為,圓的半徑為,所以,即,解之得,或(舍去).所以,所以所示橢圓的方程為.(2)由(1)得,橢圓的右準(zhǔn)線方程為,離心率,則點到右準(zhǔn)線的距離為,所以,即,把代入橢圓方程得,,因為直線的斜率,所以,因為直線經(jīng)過和,所以直線的方程為,聯(lián)立方程組得,解得或,所以,所以的面積.【點睛】本題主要考查直線和圓、橢圓的位置關(guān)系,考查橢圓的方程的求法,考查三角形面積的計算,意在考查學(xué)生對這些知識的掌握水平和分析推理計算能力.18、(1),(2)【解析】

(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式即可把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,利用消去參數(shù)即可得到直線的直角坐標(biāo)方程;(2)由于在直線上,寫出直線的標(biāo)準(zhǔn)參數(shù)方程參數(shù)方程,代入曲線的方程利用參數(shù)的幾何意義即可得出求解即可.【詳解】(1)直線的普通方程為,即,根據(jù)極坐標(biāo)與直角坐標(biāo)之間的相互轉(zhuǎn)化,,,而,則,即,故直線l的普通方程為,曲線C的直角坐標(biāo)方程(2)點在直線l上,且直線的傾斜角為,可設(shè)直線的參數(shù)方程為:(t為參數(shù)),代入到曲線C的方程得,,,由參數(shù)的幾何意義知.【點睛】熟練掌握極坐標(biāo)與直角坐標(biāo)的互化公式、方程思想、直線的參數(shù)方程中的參數(shù)的幾何意義是解題的關(guān)鍵,難度一般.19、(1);(2).【解析】

(1)對求導(dǎo),對參數(shù)進行分類討論,根據(jù)函數(shù)單調(diào)性即可求得.(2)先根據(jù),得,再根據(jù)零點解得,轉(zhuǎn)化不等式得,令,化簡得,因此,,最后根據(jù)導(dǎo)數(shù)研究對應(yīng)函數(shù)單調(diào)性,確定對應(yīng)函數(shù)最值,即得取值集合.【詳解】(1),當(dāng)時,對恒成立,與題意不符,當(dāng),,∴時,即函數(shù)在單調(diào)遞增,在單調(diào)遞減,∵和時均有,∴,解得:,綜上可知:的取值范圍;(2)由(1)可知,則,由的任意性及知,,且,∴,故,又∵,令,則,且恒成立,令,而,∴時,時,∴,令,若,則時,,即函數(shù)在單調(diào)遞減,∴,與不符;若,則時,,即函數(shù)在單調(diào)遞減,∴,與式不符;若,解得,此時恒成立,,即函數(shù)在單調(diào)遞增,又,∴時,;時,符合式,綜上,存在唯一實數(shù)符合題意.【點睛】利用導(dǎo)數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.20、(1);(2)或.【解析】

(1)聯(lián)立直線方程與雙曲線方程,消去,得到關(guān)于的一元二次方程,根據(jù)根的判別式,即可求出結(jié)論;(2)設(shè),由(1)可得關(guān)系,再由直線l過點,可得,進而建立關(guān)于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數(shù)根,整理得,,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設(shè)交點,直線l與y軸交于點,,.,即,整理得,解得或或.又,或時,的面積為.【點睛】本題考查直線與雙曲線的位置關(guān)系、三角形面積計算,要熟練掌握根與系數(shù)關(guān)系解決相交弦問題,考查計算求解能力,屬于中檔題.21、(1)見解析;(II).【解析】

試題分析:(1)取中點,連結(jié),以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能證明為直角三角形;(2)設(shè),由,得,求出平面的法向量和平面的法向量,,根據(jù)空間向量夾角余弦公式能求出結(jié)果.試題解析:(I)取中點,連結(jié),依題意可知均為正三角形,所以,又平面平面,所以平面,又平面,所以,因為,所以,即,從而為直角三角形.(II)法一:由(I)可知,又平面平面,平面平面,平面,所以平面.以為原點,建立空間直角坐標(biāo)系如圖所示,則,由可得點的坐標(biāo)所以,設(shè)平面的法向量為,則,即解得,令,得,顯然平面的一個法向量為,依題意,解得或(舍去),所以,當(dāng)時,二面角的余弦值為.法二:由(I)可知平面,所以,所以為二面角的平面角,即,在中,,所以,由正弦定理可得,即解得,又,所以,所以,當(dāng)時,二面角的余弦值為.22、(1);(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論