新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練思想02 運用數(shù)形結(jié)合的思想方法解題(精講精練)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練思想02 運用數(shù)形結(jié)合的思想方法解題(精講精練)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練思想02 運用數(shù)形結(jié)合的思想方法解題(精講精練)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練思想02 運用數(shù)形結(jié)合的思想方法解題(精講精練)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題講測練思想02 運用數(shù)形結(jié)合的思想方法解題(精講精練)(解析版)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

思想02運用數(shù)形結(jié)合的思想方法解題【命題規(guī)律】高考命題中,以知識為載體,以能力立意、思想方法為靈魂,以核心素養(yǎng)為統(tǒng)領(lǐng),兼顧試題的基礎(chǔ)性、綜合性、應(yīng)用性和創(chuàng)新性,展現(xiàn)數(shù)學(xué)的科學(xué)價值和人文價值.高考試題一是著眼于知識點新穎巧妙的組合,二是著眼于對數(shù)學(xué)思想方法、數(shù)學(xué)能力的考查.如果說數(shù)學(xué)知識是數(shù)學(xué)的內(nèi)容,可用文字和符號來記錄和描述,那么數(shù)學(xué)思想方法則是數(shù)學(xué)的意識,重在領(lǐng)會、運用,屬于思維的范疇,用于對數(shù)學(xué)問題的認(rèn)識、處理和解決.高考中常用到的數(shù)學(xué)思想主要有分類討論思想、數(shù)形結(jié)合思想、函數(shù)與方程思想、轉(zhuǎn)化與化歸思想等.【核心考點目錄】核心考點一:研究函數(shù)的零點、方程的根、圖象的交點核心考點二:解不等式、求參數(shù)范圍、最值問題核心考點三:解決以幾何圖形為背景的代數(shù)問題核心考點四:解決數(shù)學(xué)文化、情境問題【真題回歸】1.(2022·北京·統(tǒng)考高考真題)在SKIPIF1<0中,SKIPIF1<0.P為SKIPIF1<0所在平面內(nèi)的動點,且SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】依題意如圖建立平面直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上運動,設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;故選:D

2.(2022·天津·統(tǒng)考高考真題)設(shè)SKIPIF1<0,對任意實數(shù)x,記SKIPIF1<0.若SKIPIF1<0至少有3個零點,則實數(shù)SKIPIF1<0的取值范圍為______.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0.要使得函數(shù)SKIPIF1<0至少有SKIPIF1<0個零點,則函數(shù)SKIPIF1<0至少有一個零點,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.①當(dāng)SKIPIF1<0時,SKIPIF1<0,作出函數(shù)SKIPIF1<0、SKIPIF1<0的圖象如下圖所示:此時函數(shù)SKIPIF1<0只有兩個零點,不合乎題意;②當(dāng)SKIPIF1<0時,設(shè)函數(shù)SKIPIF1<0的兩個零點分別為SKIPIF1<0、SKIPIF1<0,要使得函數(shù)SKIPIF1<0至少有SKIPIF1<0個零點,則SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0;③當(dāng)SKIPIF1<0時,SKIPIF1<0,作出函數(shù)SKIPIF1<0、SKIPIF1<0的圖象如下圖所示:由圖可知,函數(shù)SKIPIF1<0的零點個數(shù)為SKIPIF1<0,合乎題意;④當(dāng)SKIPIF1<0時,設(shè)函數(shù)SKIPIF1<0的兩個零點分別為SKIPIF1<0、SKIPIF1<0,要使得函數(shù)SKIPIF1<0至少有SKIPIF1<0個零點,則SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,此時SKIPIF1<0.綜上所述,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.3.(2022·全國·統(tǒng)考高考真題)已知橢圓SKIPIF1<0,C的上頂點為A,兩個焦點為SKIPIF1<0,SKIPIF1<0,離心率為SKIPIF1<0.過SKIPIF1<0且垂直于SKIPIF1<0的直線與C交于D,E兩點,SKIPIF1<0,則SKIPIF1<0的周長是________________.【答案】13【解析】∵橢圓的離心率為SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴橢圓的方程為SKIPIF1<0,不妨設(shè)左焦點為SKIPIF1<0,右焦點為SKIPIF1<0,如圖所示,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0為正三角形,∵過SKIPIF1<0且垂直于SKIPIF1<0的直線與C交于D,E兩點,SKIPIF1<0為線段SKIPIF1<0的垂直平分線,∴直線SKIPIF1<0的斜率為SKIPIF1<0,斜率倒數(shù)為SKIPIF1<0,直線SKIPIF1<0的方程:SKIPIF1<0,代入橢圓方程SKIPIF1<0,整理化簡得到:SKIPIF1<0,判別式SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,得SKIPIF1<0,∵SKIPIF1<0為線段SKIPIF1<0的垂直平分線,根據(jù)對稱性,SKIPIF1<0,∴SKIPIF1<0的周長等于SKIPIF1<0的周長,利用橢圓的定義得到SKIPIF1<0周長為SKIPIF1<0.故答案為:13.4.(2022·浙江·統(tǒng)考高考真題)設(shè)點P在單位圓的內(nèi)接正八邊形SKIPIF1<0的邊SKIPIF1<0上,則SKIPIF1<0的取值范圍是_______.【答案】SKIPIF1<0【解析】以圓心為原點,SKIPIF1<0所在直線為SKIPIF1<0軸,SKIPIF1<0所在直線為SKIPIF1<0軸建立平面直角坐標(biāo)系,如圖所示:則SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,于是SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.5.(2022·天津·統(tǒng)考高考真題)在SKIPIF1<0中,SKIPIF1<0,D是AC中點,SKIPIF1<0,試用SKIPIF1<0表示SKIPIF1<0為___________,若SKIPIF1<0,則SKIPIF1<0的最大值為____________【答案】

SKIPIF1<0

SKIPIF1<0【解析】方法一:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,而SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.方法二:如圖所示,建立坐標(biāo)系:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以點SKIPIF1<0的軌跡是以SKIPIF1<0為圓心,以SKIPIF1<0為半徑的圓,當(dāng)且僅當(dāng)SKIPIF1<0與SKIPIF1<0相切時,SKIPIF1<0最大,此時SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.【方法技巧與總結(jié)】1、以形助數(shù)(數(shù)題形解):借助形的生動性和直觀性來闡述數(shù)與形之間的關(guān)系,把抽象問題具體化,把數(shù)轉(zhuǎn)化為形,即以形作為手段,數(shù)作為目的解決數(shù)學(xué)問題的數(shù)學(xué)思想.2、以數(shù)輔形(形題數(shù)解):借助于數(shù)的精確性、規(guī)范性、嚴(yán)密性來闡明形的某些屬性,把直觀圖形數(shù)量化,即以數(shù)作為手段,形作為目的解決問題的數(shù)學(xué)思想.【核心考點】核心考點一:研究函數(shù)的零點、方程的根、圖象的交點【典型例題】例1.(2023·河北衡水·高三周測)設(shè)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),對任意的SKIPIF1<0,都有SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,則在區(qū)間SKIPIF1<0內(nèi)關(guān)于SKIPIF1<0的方程SKIPIF1<0的根的個數(shù)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因為SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),對任意的SKIPIF1<0,都有SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0的周期為SKIPIF1<0,當(dāng)SKIPIF1<0時,則SKIPIF1<0,此時SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,分別作出函數(shù)SKIPIF1<0和SKIPIF1<0,SKIPIF1<0的圖象,如圖所示,則由圖象可知兩個函數(shù)的圖象的交點個數(shù)為SKIPIF1<0個,即方程SKIPIF1<0的零點個數(shù)為SKIPIF1<0個.故選:D.例2.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的圖象上有且僅有四個不同的點關(guān)于直線SKIPIF1<0的對稱點在SKIPIF1<0的圖象上,則實數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)函數(shù)SKIPIF1<0任意一點SKIPIF1<0關(guān)于直線SKIPIF1<0對稱的點為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,而P在函數(shù)SKIPIF1<0上,所以SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0恒過定點SKIPIF1<0,(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,設(shè)直線SKIPIF1<0與SKIPIF1<0相切于點SKIPIF1<0,SKIPIF1<0,整理可得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0;(2)當(dāng)SKIPIF1<0時,SKIPIF1<0,設(shè)直線SKIPIF1<0與函數(shù)SKIPIF1<0相切于點SKIPIF1<0點SKIPIF1<0,SKIPIF1<0,整理可得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0時,在SKIPIF1<0時,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象相交有2個交點;在SKIPIF1<0時,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象相交有2個交點,故函數(shù)SKIPIF1<0與SKIPIF1<0的圖象相交有4個交點時的SKIPIF1<0的范圍是SKIPIF1<0.故選:C.例3.(2023·上?!じ呷龑n}練習(xí))已知函數(shù)f(x)=x2+ex-SKIPIF1<0(x<0)與g(x)=x2+ln(x+a)的圖象上存在關(guān)于y軸對稱的點,則實數(shù)a的取值范圍是()A.SKIPIF1<0

B.SKIPIF1<0C.SKIPIF1<0

D.SKIPIF1<0【答案】B【解析】SKIPIF1<0關(guān)于SKIPIF1<0軸對稱得到的函數(shù)為SKIPIF1<0,依題意可知SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有公共點,由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0.對于函數(shù)SKIPIF1<0,在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0.對于函數(shù)SKIPIF1<0,在SKIPIF1<0上單調(diào)遞增.當(dāng)SKIPIF1<0時,SKIPIF1<0的圖像向右平移SKIPIF1<0個單位得到SKIPIF1<0,與SKIPIF1<0圖像在SKIPIF1<0上必有SKIPIF1<0個交點.當(dāng)SKIPIF1<0時,SKIPIF1<0的圖像向左平移SKIPIF1<0個單位得到SKIPIF1<0,要使SKIPIF1<0與SKIPIF1<0圖像在SKIPIF1<0上有交點,則需當(dāng)SKIPIF1<0時(也即SKIPIF1<0軸上),SKIPIF1<0的函數(shù)值小于SKIPIF1<0的函數(shù)值,即SKIPIF1<0,解得SKIPIF1<0.綜上所述,SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B.例4.(2023·全國·高三專題練習(xí))設(shè)SKIPIF1<0是定義在R上的偶函數(shù),對任意的SKIPIF1<0,都有SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,若在區(qū)間SKIPIF1<0內(nèi)關(guān)于SKIPIF1<0的方程SKIPIF1<0恰有三個不同的實數(shù)根,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】SKIPIF1<0對于任意的SKIPIF1<0,都有SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,又SKIPIF1<0當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,且函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),故函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0,SKIPIF1<0上的圖象如下圖所示:若在區(qū)間SKIPIF1<0,SKIPIF1<0內(nèi)關(guān)于SKIPIF1<0的方程SKIPIF1<0恰有3個不同的實數(shù)解則SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0故選:A核心考點二:解不等式、求參數(shù)范圍、最值問題【典型例題】例5.(2023春·山東棗莊·高三棗莊市第三中學(xué)??茧A段練習(xí))設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0成立,則實數(shù)SKIPIF1<0的值是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】函數(shù)SKIPIF1<0可以看作是動點SKIPIF1<0與動點SKIPIF1<0之間距離的平方,動點SKIPIF1<0在函數(shù)SKIPIF1<0的圖象上,SKIPIF1<0在直線SKIPIF1<0的圖象上,問題轉(zhuǎn)化為求直線上的動點到曲線的最小距離,由SKIPIF1<0得,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0曲線上點SKIPIF1<0到直線SKIPIF1<0的距離最小,最小距離SKIPIF1<0,則SKIPIF1<0,根據(jù)題意,要使SKIPIF1<0,則SKIPIF1<0,此時SKIPIF1<0恰好為垂足,由SKIPIF1<0,解得SKIPIF1<0.故選SKIPIF1<0.例6.(2023·全國·高三專題練習(xí))若不等式SKIPIF1<0對任意SKIPIF1<0,SKIPIF1<0恒成立,則實數(shù)m的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】設(shè)SKIPIF1<0,則T的幾何意義是直線SKIPIF1<0上的點SKIPIF1<0與曲線SKIPIF1<0上的點SKIPIF1<0的距離,將直線SKIPIF1<0平移到與面線SKIPIF1<0相切時,切點Q到直線SKIPIF1<0的距離最?。鳶KIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,此時,Q到直線SKIPIF1<0的距離SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0.故選:B例7.(2023春·黑龍江黑河·高三嫩江市高級中學(xué)??计谥校┰O(shè)函數(shù)SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,若存在唯一的整數(shù)SKIPIF1<0使得SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】B【解析】由題意可知,存在唯一的整數(shù)SKIPIF1<0,使得SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.所以,函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0.函數(shù)SKIPIF1<0在SKIPIF1<0處取得極小值SKIPIF1<0,如下圖所示,由于SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,結(jié)合圖象可知,SKIPIF1<0,解得SKIPIF1<0.故選:B核心考點三:解決以幾何圖形為背景的代數(shù)問題【典型例題】例8.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,若點P是SKIPIF1<0所在平面內(nèi)的一點,且SKIPIF1<0,則SKIPIF1<0的最大值等于(

)A.8 B.10 C.12 D.13【答案】C【解析】∵SKIPIF1<0,∴可以A為原點,SKIPIF1<0所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系;不妨設(shè)SKIPIF1<0,則SKIPIF1<0,故點P坐標(biāo)為SKIPIF1<0則SKIPIF1<0,∴SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0遞增,在SKIPIF1<0上遞減,則SKIPIF1<0,即SKIPIF1<0的最大值為12.故選:C.例9.(2023春·浙江杭州·高二學(xué)軍中學(xué)階段練習(xí))設(shè)不等式SKIPIF1<0的解集為SKIPIF1<0,則SKIPIF1<0的值是(

)A.5 B.SKIPIF1<0 C.6 D.7【答案】D【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,原不等式可化為SKIPIF1<0.先解SKIPIF1<0.則SKIPIF1<0,移項可得SKIPIF1<0,兩邊平方可得,SKIPIF1<0,整理可得,SKIPIF1<0,兩邊平方整理可得SKIPIF1<0.所以,SKIPIF1<0表示的點SKIPIF1<0在雙曲線SKIPIF1<0上.則不等式SKIPIF1<0表示的點SKIPIF1<0在雙曲線SKIPIF1<0上及其內(nèi)部.則不等式SKIPIF1<0與不等式組SKIPIF1<0同解,整理可得SKIPIF1<0.由已知可得,不等式SKIPIF1<0的解集是SKIPIF1<0,所以SKIPIF1<0的兩個解為SKIPIF1<0、SKIPIF1<0,根據(jù)韋達(dá)定理有SKIPIF1<0.故選:D.例10.(2023春·安徽六安·高三六安一中??茧A段練習(xí))若不等式SKIPIF1<0的解集為區(qū)間SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】C【解析】如圖所示:因為SKIPIF1<0表示以坐標(biāo)原點為圓心,4為半徑位于SKIPIF1<0軸上方(含和SKIPIF1<0軸交點)的半圓,SKIPIF1<0表示過坐標(biāo)原點及第一三象限內(nèi)的直線,又因為不等式SKIPIF1<0的解集為區(qū)間SKIPIF1<0,且SKIPIF1<0,即半圓位于直線下方的區(qū)間長度為2,所以SKIPIF1<0,所以直線與半圓的交點SKIPIF1<0,所以SKIPIF1<0.故選:C.核心考點四:解決數(shù)學(xué)文化、情境問題【典型例題】例11.(2023·全國·高三專題練習(xí))幾何學(xué)史上有一個著名的米勒問題:“設(shè)點M,N是銳角SKIPIF1<0的一邊QA上的兩點,試在QB邊上找一點P,使得SKIPIF1<0最大.”如圖,其結(jié)論是:點P為過M,N兩點且和射線QB相切的圓與射線QB的切點.根據(jù)以上結(jié)論解決以下問題:在平面直角坐標(biāo)系xOy中,給定兩點M(-1,2),N(1,4),點P在x軸上移動,當(dāng)SKIPIF1<0取最大值時,點P的橫坐標(biāo)是(

)A.1 B.-7 C.1或-1 D.2或-7【答案】A【解析】由題M(-1,2),N(1,4),則線段MN的中點坐標(biāo)為(0,3),易知SKIPIF1<0,則經(jīng)過M,N兩點的圓的圓心在線段MN的垂直平分線SKIPIF1<0上.設(shè)圓心為SKIPIF1<0,則圓S的方程為SKIPIF1<0.當(dāng)SKIPIF1<0取最大值時,圓SKIPIF1<0必與SKIPIF1<0軸相切于點SKIPIF1<0(由題中結(jié)論得),則此時P的坐標(biāo)為SKIPIF1<0,代入圓S的方程,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,即對應(yīng)的切點分別為P(1,0)和SKIPIF1<0.因為對于定長的弦在優(yōu)弧上所對的圓周角會隨著圓的半徑減小而角度增大,又過點M,N,SKIPIF1<0的圓的半徑大于過點M,N,P的圓的半徑,所以SKIPIF1<0,故點P(1,0)為所求,即點P的橫坐標(biāo)為1.故選:A.例12.(2023春·北京大興·高三??茧A段練習(xí))數(shù)學(xué)美的表現(xiàn)形式不同于自然美或藝術(shù)美那樣直觀,它蘊藏于特有的抽象概念,公式符號,推理論證,思維方法等之中,揭示了規(guī)律性,是一種科學(xué)的真實美.平面直角坐標(biāo)系中,曲線SKIPIF1<0就是一條形狀優(yōu)美的曲線,對于此曲線,給出如下結(jié)論:①曲線SKIPIF1<0圍成的圖形的面積是SKIPIF1<0;②曲線SKIPIF1<0上的任意兩點間的距離不超過2;③若SKIPIF1<0是曲線SKIPIF1<0上任意一點,則SKIPIF1<0的最小值是1.其中正確結(jié)論的個數(shù)為(

)A.0 B.1 C.2 D.3【答案】C【解析】當(dāng)SKIPIF1<0且SKIPIF1<0時,曲線SKIPIF1<0的方程可化為SKIPIF1<0;當(dāng)SKIPIF1<0且SKIPIF1<0時,曲線SKIPIF1<0的方程可化為SKIPIF1<0;當(dāng)SKIPIF1<0且SKIPIF1<0時,曲線SKIPIF1<0的方程可化為SKIPIF1<0;當(dāng)SKIPIF1<0且SKIPIF1<0時,曲線SKIPIF1<0的方程可化為SKIPIF1<0,曲線SKIPIF1<0的圖像如圖所示;由圖可知,曲線SKIPIF1<0所圍成的面積為四個半圓的面積與邊長為SKIPIF1<0的正方形的面積之和,從而曲線SKIPIF1<0所圍成的面積SKIPIF1<0,故①正確;過原點SKIPIF1<0且連接兩個半圓圓心SKIPIF1<0、SKIPIF1<0的直線交曲線SKIPIF1<0于SKIPIF1<0、SKIPIF1<0兩點,如下圖所示:則SKIPIF1<0,所以,SKIPIF1<0,故命題②錯誤;因為SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0最小時,易知SKIPIF1<0在曲線SKIPIF1<0的第一象限內(nèi)的圖象上,因為曲線SKIPIF1<0的第一象限內(nèi)圖象是圓心為SKIPIF1<0,半徑SKIPIF1<0的半圓,所以圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0,故③正確.故選:C例13.(2023·青海海東·統(tǒng)考一模)窗花是貼在窗紙或窗戶玻璃上的前紙,它是中國古老的傳統(tǒng)民間藝術(shù)之一.在2022年虎年新春來臨之際,人們設(shè)計了一種由外圍四個大小相等的半圓和中間正方形所構(gòu)成的剪紙窗花(如圖1).已知正方形SKIPIF1<0的邊長為2,中心為SKIPIF1<0,四個半圓的圓心均為正方形SKIPIF1<0各邊的中點(如圖2),若SKIPIF1<0在SKIPIF1<0的中點,則SKIPIF1<0___________.【答案】8【解析】方法一:圖3如圖3,取SKIPIF1<0中點為SKIPIF1<0,連結(jié)SKIPIF1<0,顯然SKIPIF1<0過SKIPIF1<0點.易知,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.所以,SKIPIF1<0SKIPIF1<0.圖4如圖4,延長SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,易知SKIPIF1<0是SKIPIF1<0的中點,且SKIPIF1<0.則SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.所以,SKIPIF1<0SKIPIF1<0.所以,SKIPIF1<0.故答案為:8.方法二:圖5取SKIPIF1<0中點為SKIPIF1<0,連結(jié)SKIPIF1<0,顯然SKIPIF1<0過SKIPIF1<0點.易知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0如圖5,取SKIPIF1<0中點為SKIPIF1<0,顯然SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0為SKIPIF1<0中點,則SKIPIF1<0.所以,SKIPIF1<0SKIPIF1<0SKIPIF1<0.故答案為:8.【新題速遞】一、單選題1.(2023春·江蘇鹽城·高三鹽城中學(xué)??迹┤糁本€SKIPIF1<0與曲線SKIPIF1<0有兩個交點,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】SKIPIF1<0表示的曲線是圓心為SKIPIF1<0,半徑為SKIPIF1<0的圓在SKIPIF1<0軸以及右側(cè)的部分,如圖所示:直線SKIPIF1<0必過定點SKIPIF1<0,當(dāng)直線SKIPIF1<0與圓相切時,直線和圓恰有一個交點,即SKIPIF1<0,結(jié)合直線與半圓的相切可得SKIPIF1<0,當(dāng)直SKIPIF1<0的斜率不存在時,即SKIPIF1<0時,直線和曲線恰有兩個交點,所以要使直線和曲線有兩個交點,則SKIPIF1<0.故選:B.2.(2023春·湖北隨州·高三隨州市曾都區(qū)第一中學(xué)??茧A段練習(xí))已知x,y是實數(shù),且SKIPIF1<0,則SKIPIF1<0的最大值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】方程可化為SKIPIF1<0,表示以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓,SKIPIF1<0的幾何意義是圓上一點與點ASKIPIF1<0連線的斜率,設(shè)SKIPIF1<0,即SKIPIF1<0,當(dāng)此直線與圓相切時,斜率最大或最小,當(dāng)切線位于切線AB時斜率最大.

此時SKIPIF1<0,SKIPIF1<0,,所以SKIPIF1<0的最大值為SKIPIF1<0.故選:D.3.(2023春·陜西渭南·高一統(tǒng)考)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0.若函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)不可能是(

)A.1 B.2 C.3 D.4【答案】A【解析】函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,作出SKIPIF1<0的圖象如圖:,故當(dāng)SKIPIF1<0時,SKIPIF1<0有3個零點;當(dāng)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0的圖象與x軸有兩個交點,則函數(shù)有2個零點;當(dāng)SKIPIF1<0時,SKIPIF1<0的圖象與x軸有4個交點,則函數(shù)有4個零點;由于SKIPIF1<0也為偶函數(shù),結(jié)合SKIPIF1<0圖象可知,SKIPIF1<0不可能有1個零點,故選:A4.(2023春·陜西西安·高三統(tǒng)考期末)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)為(

)A.1 B.3 C.4 D.5【答案】D【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,且定義域為SKIPIF1<0,關(guān)于原點對稱,故SKIPIF1<0為奇函數(shù),所以我們求出SKIPIF1<0時零點個數(shù)即可,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,且SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0有1零點,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上有1零點,圖像大致如圖所示:故SKIPIF1<0在SKIPIF1<0上有2個零點,又因為其為奇函數(shù),則其在SKIPIF1<0上也有2個零點,且SKIPIF1<0,故SKIPIF1<0共5個零點,故選:D.5.(2023春·黑龍江哈爾濱·高一哈爾濱三中??茧A段練習(xí))若函數(shù)SKIPIF1<0的定義域為SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)為(

)A.0 B.1 C.2 D.4【答案】D【解析】令SKIPIF1<0解得SKIPIF1<0,令SKIPIF1<0解得SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0為偶函數(shù),所以SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對稱,所以SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0軸對稱,故作出SKIPIF1<0的圖象如下,令SKIPIF1<0,即SKIPIF1<0,由圖象可知,SKIPIF1<0的圖象與SKIPIF1<0的圖象共有四個交點,所以函數(shù)SKIPIF1<0的零點個數(shù)為4個.故選:D.6.(2023·山東濰坊·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0是定義域為SKIPIF1<0的偶函數(shù),且SKIPIF1<0是奇函數(shù),當(dāng)SKIPIF1<0時,有SKIPIF1<0,若函數(shù)SKIPIF1<0的零點個數(shù)為5,則實數(shù)SKIPIF1<0取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】C【解析】∵偶函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是奇函數(shù),得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0的圖像交點的個數(shù),因為SKIPIF1<0,即為SKIPIF1<0與SKIPIF1<0的圖像交點的個數(shù),因為SKIPIF1<0的圖像為半圓,故由圖像可知斜率SKIPIF1<0應(yīng)該在SKIPIF1<0與SKIPIF1<0之間或為SKIPIF1<0,SKIPIF1<0SKIPIF1<0或SKIPIF1<0,故選:C.7.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若存在SKIPIF1<0使得SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】∵SKIPIF1<0,∴SKIPIF1<0與SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,作出SKIPIF1<0的大致圖象如圖所示,易知SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0取到等號,故當(dāng)SKIPIF1<0時,令SKIPIF1<0,SKIPIF1<0單減,SKIPIF1<0,故SKIPIF1<0.故選:A二、多選題8.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0是雙曲線SKIPIF1<0的左、右焦點,過SKIPIF1<0作傾斜角為SKIPIF1<0的直線分別交SKIPIF1<0軸與雙曲線右支于點SKIPIF1<0,SKIPIF1<0,下列判斷正確的是(

)A.SKIPIF1<0, B.SKIPIF1<0C.SKIPIF1<0的離心率等于SKIPIF1<0 D.SKIPIF1<0的漸近線方程為SKIPIF1<0【答案】BCD【解析】如下圖所示,因為SKIPIF1<0,即SKIPIF1<0為SKIPIF1<0中點,SKIPIF1<0為SKIPIF1<0中點,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,A錯誤,B正確;由SKIPIF1<0知:SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,C正確;所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的漸近線方程為SKIPIF1<0,D正確.故選:BCD.9.(2023·全國·高三專題練習(xí))已知直線SKIPIF1<0過拋物線SKIPIF1<0的焦點SKIPIF1<0,且斜率為SKIPIF1<0,SKIPIF1<0與拋物線交于SKIPIF1<0兩點(SKIPIF1<0在第一象限),以SKIPIF1<0為直徑的圓分別與SKIPIF1<0軸相切于SKIPIF1<0兩點,則下列結(jié)論正確的是(

)A.SKIPIF1<0B.SKIPIF1<0C.若SKIPIF1<0為拋物線SKIPIF1<0上的動點,SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0為拋物線SKIPIF1<0上的點,則SKIPIF1<0【答案】ABC【解析】設(shè)直線PQ的方程為:ySKIPIF1<0(x﹣2),與SKIPIF1<0聯(lián)立整理可得:3x2﹣20x+12=0,解得:xSKIPIF1<0或6,則P(6,4SKIPIF1<0),Q(SKIPIF1<0,SKIPIF1<0);所以|PQ|=6SKIPIF1<04SKIPIF1<0,選項A正確;因為F(2,0),所以PF,QF的中點分別為:(4,2SKIPIF1<0),(SKIPIF1<0,SKIPIF1<0),所以A(0,SKIPIF1<0),B(0,SKIPIF1<0),所以|AB|=2SKIPIF1<0,選項B正確;如圖M在拋物線上,ME垂直于準(zhǔn)線交于E,可得|MF|=|ME|,所以|MF|+|MN|=|ME|+|MN|≥NE=2+2=4,當(dāng)N,M,E三點共線時,|MF|+|MN|最小,且最小值為4,選項C正確;對于選項D,若SKIPIF1<0為拋物線SKIPIF1<0上的點,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,選項D錯誤.故選:ABC.10.(2023春·河南·高三校聯(lián)考)在三棱錐SKIPIF1<0中,平面SKIPIF1<0平面BCD,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為等邊三角形,E是棱AC的中點,F(xiàn)是棱AD上一點,若異面直線DE與BF所成角的余弦值為SKIPIF1<0,則AF的值可能為(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【解析】由SKIPIF1<0為等邊三角形,取BD的中點O,連接SKIPIF1<0,則SKIPIF1<0又平面SKIPIF1<0平面BCD,且平面SKIPIF1<0平面SKIPIF1<0所以SKIPIF1<0平面BCD,由SKIPIF1<0過SKIPIF1<0作與SKIPIF1<0平行的直線為SKIPIF1<0軸,分別以SKIPIF1<0為SKIPIF1<0軸建立如圖所示的空間直角坐標(biāo)系,因為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0.故選:AC11.(2023秋·福建三明·高一福建省寧化第一中學(xué)校考階段練習(xí))已知SKIPIF1<0為SKIPIF1<0的重心,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的可能取值為(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】CD【解析】如圖,SKIPIF1<0是SKIPIF1<0的重心,記SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,所以SKIPIF1<0.即SKIPIF1<0.只有CD滿足.故選:CD.12.(2023春·湖北黃岡·高三??奸_

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論