版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若不等式組無解,那么m的取值范圍是()A.m≤2 B.m≥2 C.m<2 D.m>22.的相反數(shù)是()A. B.2 C. D.3.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°4.如圖,AB為⊙O直徑,已知為∠DCB=20°,則∠DBA為()A.50° B.20° C.60° D.70°5.在平面直角坐標系xOy中,將點N(–1,–2)繞點O旋轉(zhuǎn)180°,得到的對應(yīng)點的坐標是()A.(1,2) B.(–1,2)C.(–1,–2) D.(1,–2)6.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. B. C. D.7.如圖,四邊形ABCD是邊長為1的正方形,動點E、F分別從點C,D出發(fā),以相同速度分別沿CB,DC運動(點E到達C時,兩點同時停止運動).連接AE,BF交于點P,過點P分別作PM∥CD,PN∥BC,則線段MN的長度的最小值為()A. B. C. D.18.如圖,四邊形ABCD中,AC垂直平分BD,垂足為E,下列結(jié)論不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC9.明明和亮亮都在同一直道A、B兩地間做勻速往返走鍛煉明明的速度小于亮亮的速度忽略掉頭等時間明明從A地出發(fā),同時亮亮從B地出發(fā)圖中的折線段表示從開始到第二次相遇止,兩人之間的距離米與行走時間分的函數(shù)關(guān)系的圖象,則A.明明的速度是80米分 B.第二次相遇時距離B地800米C.出發(fā)25分時兩人第一次相遇 D.出發(fā)35分時兩人相距2000米10.如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,則電線桿AB的高度為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標系xOy中,A(-2,0),B(0,2),⊙O的半徑為1,點C為⊙O上一動點,過點B作BP⊥直線AC,垂足為點P,則P點縱坐標的最大值為cm.12.如果一個直角三角形的兩條直角邊的長分別為5、12,則斜邊上的高的長度為______.13.若m﹣n=4,則2m2﹣4mn+2n2的值為_____.14.如圖,在△ABC中,AB=5,AC=4,BC=3,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB、AC于點M、N;②分別以點M、N為圓心,以大于的長為半徑作弧,兩弧相交于點E;③作射線AE;④以同樣的方法作射線BF,AE交BF于點O,連接OC,則OC=________.15.如圖是一個立體圖形的三種視圖,則這個立體圖形的體積(結(jié)果保留π)為______________.16.如圖,直線y=x+2與反比例函數(shù)y=的圖象在第一象限交于點P.若OP=,則k的值為________.17.如圖,正方形ABCD中,E是BC邊上一點,以E為圓心,EC為半徑的半圓與以A為圓心,AB為半徑的圓弧外切,則sin∠EAB的值為.三、解答題(共7小題,滿分69分)18.(10分)計算:(π﹣3.14)0﹣2﹣|﹣3|.19.(5分)先化簡,再求值:(﹣)÷,其中x的值從不等式組的整數(shù)解中選取.20.(8分)如圖,點在線段上,,,.求證:.21.(10分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,切線DE交AC于點E.(1)求證:∠A=∠ADE;(2)若AD=8,DE=5,求BC的長.22.(10分)在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學(xué)生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:分組頻數(shù)頻率第一組(0≤x<15)30.15第二組(15≤x<30)6a第三組(30≤x<45)70.35第四組(45≤x<60)b0.20(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計圖補充完整;如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有多少人?已知第一組中只有一個甲班學(xué)生,第四組中只有一個乙班學(xué)生,老師隨機從這兩個組中各選一名學(xué)生談心得體會,則所選兩人正好都是甲班學(xué)生的概率是多少?23.(12分)如圖,一枚運載火箭從距雷達站C處5km的地面O處發(fā)射,當火箭到達點A,B時,在雷達站C測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.(1)求A,B兩點間的距離(結(jié)果精確到0.1km).(2)當運載火箭繼續(xù)直線上升到D處,雷達站測得其仰角為56°,求此時雷達站C和運載火箭D兩點間的距離(結(jié)果精確到0.1km).(參考數(shù)據(jù):sin34°=0.56,cos34°=0.83,tan34°=0.1.)24.(14分)問題提出(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;問題探究(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點D為邊BC上的動點,連接AD以AD為直徑作⊙O交邊AB、AC分別于點E、F,接E、F,求EF的最小值;問題解決(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線段AC的長是否存在最小值,若存在,求最小值:若不存在,請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
先求出每個不等式的解集,再根據(jù)不等式組解集的求法和不等式組無解的條件,即可得到m的取值范圍.【詳解】由①得,x<m,由②得,x>1,又因為不等式組無解,所以m≤1.故選A.【點睛】此題的實質(zhì)是考查不等式組的求法,求不等式組的解集,要根據(jù)以下原則:同大取較大,同小較小,小大大小中間找,大大小小解不了.2、D【解析】
因為-+=0,所以-的相反數(shù)是.故選D.3、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據(jù)平行線的性質(zhì)得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點睛”本題考查了平行線的性質(zhì)的應(yīng)用,能正確作出輔助線是解此題的關(guān)鍵.4、D【解析】題解析:∵AB為⊙O直徑,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故選D.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.5、A【解析】
根據(jù)點N(–1,–2)繞點O旋轉(zhuǎn)180°,所得到的對應(yīng)點與點N關(guān)于原點中心對稱求解即可.【詳解】∵將點N(–1,–2)繞點O旋轉(zhuǎn)180°,∴得到的對應(yīng)點與點N關(guān)于原點中心對稱,∵點N(–1,–2),∴得到的對應(yīng)點的坐標是(1,2).故選A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),由旋轉(zhuǎn)的性質(zhì)得到的對應(yīng)點與點N關(guān)于原點中心對稱是解答本題的關(guān)鍵.6、A【解析】
根據(jù)銳角三角函數(shù)的定義得出sinB等于∠B的對邊除以斜邊,即可得出答案.【詳解】根據(jù)在△ABC中,∠C=90°,那么sinB==,故答案選A.【點睛】本題考查的知識點是銳角三角函數(shù)的定義,解題的關(guān)鍵是熟練的掌握銳角三角函數(shù)的定義.7、B【解析】分析:由于點P在運動中保持∠APD=90°,所以點P的路徑是一段以AD為直徑的弧,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.詳解:由于點P在運動中保持∠APD=90°,∴點P的路徑是一段以AD為直徑的弧,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故選B.點睛:本題主要考查的是圓的相關(guān)知識和勾股定理,屬于中等難度的題型.解決這個問題的關(guān)鍵是根據(jù)圓的知識得出點P的運動軌跡.8、C【解析】
解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,∴Rt△BCE≌Rt△DCE(HL).∴選項ABD都一定成立.故選C.9、B【解析】
C、由二者第二次相遇的時間結(jié)合兩次相遇分別走過的路程,即可得出第一次相遇的時間,進而得出C選項錯誤;A、當時,出現(xiàn)拐點,顯然此時亮亮到達A地,利用速度路程時間可求出亮亮的速度及兩人的速度和,二者做差后可得出明明的速度,進而得出A選項錯誤;B、根據(jù)第二次相遇時距離B地的距離明明的速度第二次相遇的時間、B兩地間的距離,即可求出第二次相遇時距離B地800米,B選項正確;D、觀察函數(shù)圖象,可知:出發(fā)35分鐘時亮亮到達A地,根據(jù)出發(fā)35分鐘時兩人間的距離明明的速度出發(fā)時間,即可求出出發(fā)35分鐘時兩人間的距離為2100米,D選項錯誤.【詳解】解:第一次相遇兩人共走了2800米,第二次相遇兩人共走了米,且二者速度不變,
,
出發(fā)20分時兩人第一次相遇,C選項錯誤;
亮亮的速度為米分,
兩人的速度和為米分,
明明的速度為米分,A選項錯誤;
第二次相遇時距離B地距離為米,B選項正確;
出發(fā)35分鐘時兩人間的距離為米,D選項錯誤.
故選:B.【點睛】本題考查了一次函數(shù)的應(yīng)用,觀察函數(shù)圖象,逐一分析四個選項的正誤是解題的關(guān)鍵.10、B【解析】
延長AD交BC的延長線于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由題意得∠E=30°,∴EF=,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,即電線桿的高度為(2+4)米.點睛:本題考查的是解直角三角形的應(yīng)用-仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
當AC與⊙O相切于點C時,P點縱坐標的最大值,如圖,直線AC交y軸于點D,連結(jié)OC,作CH⊥x軸于H,PM⊥x軸于M,DN⊥PM于N,∵AC為切線,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=OA=,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=BD=(2-)=1-,在Rt△DPN中,∵∠PDN=30°,∴PN=DP=-,而MN=OD=,∴PM=PN+MN=1-+=,即P點縱坐標的最大值為.【點睛】本題是圓的綜合題,先求出OD的長度,最后根據(jù)兩點之間線段最短求出PN+MN的值.12、【解析】
利用勾股定理求出斜邊長,再利用面積法求出斜邊上的高即可.【詳解】解:∵直角三角形的兩條直角邊的長分別為5,12,∴斜邊為=13,∵三角形的面積=×5×12=×13h(h為斜邊上的高),∴h=.故答案為:.【點睛】考查了勾股定理,以及三角形面積公式,熟練掌握勾股定理是解本題的關(guān)鍵.13、1【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴當m﹣n=4時,原式=2×42=1.故答案為:1.14、.【解析】
直接利用勾股定理的逆定理結(jié)合三角形內(nèi)心的性質(zhì)進而得出答案.【詳解】過點O作OD⊥BC,OG⊥AC,垂足分別為D,G,由題意可得:O是△ACB的內(nèi)心,∵AB=5,AC=4,BC=3,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴四邊形OGCD是正方形,∴DO=OG==1,∴CO=.故答案為.【點睛】此題主要考查了基本作圖以及三角形的內(nèi)心,正確得出OD的長是解題關(guān)鍵.15、250【解析】
從三視圖可以看正視圖以及左視圖為矩形,而俯視圖為圓形,故可以得出該立體圖形為圓柱.由三視圖可得圓柱的半徑和高,易求體積.【詳解】該立體圖形為圓柱,∵圓柱的底面半徑r=5,高h=10,∴圓柱的體積V=πr2h=π×52×10=250π(立方單位).答:立體圖形的體積為250π立方單位.故答案為250π.【點睛】考查學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查;圓柱體積公式=底面積×高.16、1【解析】設(shè)點P(m,m+2),∵OP=,∴=,解得m1=1,m2=﹣1(不合題意舍去),∴點P(1,1),∴1=,解得k=1.點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點坐標,仔細審題,能夠求得點P的坐標是解題的關(guān)鍵.17、.【解析】試題分析:設(shè)正方形的邊長為y,EC=x,由題意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y≠0,化簡得y=4x,∴sin∠EAB=.考點:1.相切兩圓的性質(zhì);2.勾股定理;3.銳角三角函數(shù)的定義三、解答題(共7小題,滿分69分)18、﹣1.【解析】
本題涉及零指數(shù)冪、負指數(shù)冪、二次根式化簡和特殊角的三角函數(shù)值4個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.【詳解】原式=1﹣3+4﹣3,=﹣1.【點睛】本題主要考查了實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關(guān)鍵是熟練掌握負整數(shù)指數(shù)冪、零指數(shù)冪、二次根式、絕對值等考點的運算.19、-【解析】
先化簡,再解不等式組確定x的值,最后代入求值即可.【詳解】(﹣)÷,=÷=解不等式組,可得:﹣2<x≤2,∴x=﹣1,0,1,2,∵x=﹣1,0,1時,分式無意義,∴x=2,∴原式==﹣.20、證明見解析【解析】
若要證明∠A=∠E,只需證明△ABC≌△EDB,題中已給了兩邊對應(yīng)相等,只需看它們的夾角是否相等,已知給了DE//BC,可得∠ABC=∠BDE,因此利用SAS問題得解.【詳解】∵DE//BC∴∠ABC=∠BDE在△ABC與△EDB中,∴△ABC≌△EDB(SAS)∴∠A=∠E21、(1)見解析(2)7.5【解析】
(1)只要證明∠A+∠B=90°,∠ADE+∠B=90°即可解決問題;(2)首先證明AC=2DE=10,在Rt△ADC中,求得DC=6,設(shè)BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解決問題.【詳解】(1)證明:連接OD,∵DE是切線,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠A=∠ADE;(2)連接CD,∵∠A=∠ADE∴AE=DE,∵BC是⊙O的直徑,∠ACB=90°,∴EC是⊙O的切線,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,DC=,設(shè)BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,∴x2+62=(x+8)2-102,解得x=4.5,∴BC=【點睛】此題主要考查圓的切線問題,解題的關(guān)鍵是熟知切線的性質(zhì).22、0.34【解析】
(1)由統(tǒng)計圖易得a與b的值,繼而將統(tǒng)計圖補充完整;(2)利用用樣本估計總體的知識求解即可求得答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與所選兩人正好都是甲班學(xué)生的情況,再利用概率公式即可求得答案.【詳解】(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵總?cè)藬?shù)為:3÷0.15=20(人),∴b=20×0.20=4(人);故答案為0.3,4;補全統(tǒng)計圖得:(2)估計仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有:180×(0.35+0.20)=99(人);(3)畫樹狀圖得:∵共有12種等可能的結(jié)果,所選兩人正好都是甲班學(xué)生的有3種情況,∴所選兩人正好都是甲班學(xué)生的概率是:=.【點睛】本題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、(1)1.7km;(2)8.9km;【解析】
(1)根據(jù)銳角三角函數(shù)可以表示出OA和OB的長,從而可以求得AB的長;(2)根據(jù)銳角三角函數(shù)可以表示出CD,從而可以求得此時雷達站C和運載火箭D兩點間的距離.【詳解】解:(1)由題意可得,∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km,∴AO=OC?tan34°,BO=OC?tan45°,∴AB=OB﹣OA=OC?tan45°﹣OC?tan34°=OC(tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km,即A,B兩點間的距離是1.7km;(2)由已知可得,∠DOC=90°,OC=5km,∠DCO=56°,∴cos∠DCO=即∵sin34°=cos56°,∴解得,CD≈8.9答:此時雷達站C和運載火箭D兩點間的距離是8.9km.【點睛】本題考查解直角三角形的應(yīng)用﹣仰角俯角問題,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想和銳角三角函數(shù)解答.24、(1)△ABC的外接圓的R為1;(2)EF的最小值為2;(3)存在,AC的最小值為9.【解析】
(1)如圖1中,作△ABC的外接圓,連接OA,OC.證明∠AOC=90°即可解決問題;(2)如圖2中,作AH⊥BC于H.當直徑AD的值一定時,EF的值也確定,根據(jù)垂線段最短可知當AD與AH重合時,AD的值最短,此時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林藝術(shù)學(xué)院《外國文學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 文言主觀簡答試題專訓(xùn)(二)-2025新高考語文一輪復(fù)習
- 吉林藝術(shù)學(xué)院《概念設(shè)計》2021-2022學(xué)年第一學(xué)期期末試卷
- 手工品訂單承攬協(xié)議書范文范本
- 2024年大學(xué)生接活互助協(xié)議書模板
- 吉林師范大學(xué)《習近平總書記關(guān)于教育的重要論述研究》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年處理廢石協(xié)議書模板
- 農(nóng)村地基自建房轉(zhuǎn)讓協(xié)議書范文
- 畜牧業(yè)對氣候變化的影響分析報告
- 企業(yè)衛(wèi)生安全檢查管理制度
- 2015第十一屆新希望杯全國數(shù)學(xué)大賽小學(xué)6年級復(fù)賽試卷
- 內(nèi)科醫(yī)保入院指征
- 美濟礁 仁愛礁
- 運輸公司年度工作計劃(3篇)
- 邀請函單頁模板
- 初中數(shù)學(xué)華東師大七年級上冊第章走進數(shù)學(xué)世界-《月歷中的數(shù)學(xué)奧秘》PPT
- (完整word版)蘭亭集序原文及譯文
- 問診及體格檢查課件
- 土石方場平工程施工組織設(shè)計
- DB37-T 5019-2021 裝配式混凝土結(jié)構(gòu)工程施工與質(zhì)量驗收標準
- 企業(yè)風險管理-戰(zhàn)略與績效整合(中文版)
評論
0/150
提交評論