版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年上海歐華職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.______稱為向量;常用
______表示,記為
______,又可用小寫字線表示為
______.答案:既有大小,又有方向的量叫做向量;表示方法:①常用有帶箭頭的線段來表示,記為有向線段AB,②又可用小寫字線表示為:a,b,c…,故為:既有大小,又有方向的量;有帶箭頭的線段,有向線段AB,a,b,c….2.用反證法證明命題:“三角形的內(nèi)角至多有一個鈍角”,正確的假設(shè)是()
A.三角形的內(nèi)角至少有一個鈍角
B.三角形的內(nèi)角至少有兩個鈍角
C.三角形的內(nèi)角沒有一個鈍角
D.三角形的內(nèi)角沒有一個鈍角或至少有兩個鈍角答案:B3.若命題P(n)對n=k成立,則它對n=k+2也成立,又已知命題P(2)成立,則下列結(jié)論正確的是()
A.P(n)對所有自然數(shù)n都成立
B.P(n)對所有正偶數(shù)n成立
C.P(n)對所有正奇數(shù)n都成立
D.P(n)對所有大于1的自然數(shù)n成立答案:B4.5本不同的書全部分給3個學(xué)生,每人至少一本,共有()種分法.
A.60
B.150
C.300
D.210答案:B5.下面的結(jié)論正確的是()A.一個程序的算法步驟是可逆的B.一個算法可以無止境地運算下去的C.完成一件事情的算法有且只有一種D.設(shè)計算法要本著簡單方便的原則答案:算法需每一步都按順序進行,并且結(jié)果唯一,不能保證可逆,故A不正確;一個算法必須在有限步內(nèi)完成,不然就不是問題的解了,故B不正確;一般情況下,完成一件事情的算法不止一個,但是存在一個比較好的,故C不正確;設(shè)計算法要盡量運算簡單,節(jié)約時間,故D正確,故選D.6.直線l經(jīng)過點A(2,-1)和點B(-1,5),其斜率為()
A.-2
B.2
C.-3
D.3答案:A7.若點A分有向線段所成的比是2,則點C分有向線段所成的比是()
A.
B.3
C.-2
D.-3答案:D8.x>1是x>2的()A.充分但不必要條件B.充要條件C.必要但不充分條件D.既不充分又不必要條件答案:由x>1,我們不一定能得出x>2,比如x=1.5,所以x>1不是x>2的充分條件;∵x>2>1,∴由x>2,能得出x>1,∴x>1是x>2的必要條件∴x>1是x>2的必要但不充分條件故選C.9.若矩陣A=
72
69
67
65
62
59
81
74
68
64
59
52
85
79
76
72
69
64
228
219
211
204
195
183
是表示我校2011屆學(xué)生高二上學(xué)期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學(xué)成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分數(shù).若經(jīng)過一定量的努力,各科能前進的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分數(shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()
A.語文
B.數(shù)學(xué)
C.外語
D.都一樣答案:B10.設(shè)z是復(fù)數(shù),a(z)表示zn=1的最小正整數(shù)n,則對虛數(shù)單位i,a(i)=()A.8B.6C.4D.2答案:a(i)=in=1,則最小正整數(shù)n為4.故選C.11.已知a為常數(shù),a>0且a≠1,指數(shù)函數(shù)f(x)=ax和對數(shù)函數(shù)g(x)=logax的圖象分別為C1與C2,點M在曲線C1上,線段OM(O為坐標原點)與曲線C1的另一個交點為N,若曲線C2上存在一點P,且點P的橫坐標與點M的縱坐標相等,點P的縱坐標是點N的橫坐標2倍,則點P的坐標為______.答案:設(shè)點M的坐標為(m,am),點N的坐標為(n,an)∵點P的橫坐標與點M的縱坐標相等∴點P的坐標為(am,m)∵點P的縱坐標是點N的橫坐標2倍,∴m=2n而O、M、N三點共線則amm=ann=
am2m2解得:am=4即m=loga4∴點P的坐標為(4,loga4)故為:(4,loga4)12.(理)在直角坐標系中,圓C的參數(shù)方程是x=2cosθy=2+2sinθ(θ為參數(shù)),以原點為極點,以x軸正半軸為極軸建立極坐標系,則圓C的圓心極坐標為______.答案:∵直角坐標系中,圓C的參數(shù)方程是x=2cosθy=2+2sinθ(θ為參數(shù)),∴x2+(y-2)2=4,∵以原點為極點,以x軸正半軸為極軸建立極坐標系,∴圓心坐標(0,2),r=2∵0=pcosθ,∴θ=π2,又p=r=2,∴圓C的圓心極坐標為(2,π2),故為:(2,π2).13.某制藥廠為了縮短培養(yǎng)時間,決定優(yōu)選培養(yǎng)溫度,試驗范圍定為29℃至50℃,現(xiàn)用分數(shù)法確定最佳溫度,設(shè)第1,2,3次試驗的溫度分別為x1,x2,x3,若第2個試點比第1個試點好,則x3的值為(
)。答案:34℃或45℃14.過點P(4,-1)且與直線3x-4y+6=0垂直的直線方程是(
)
A.4x+3y-13=0
B.4x-3y-19=0
C.3x-4y-16=0
D.3x+4y-8=0答案:A15.已知函數(shù)f(x)=2x,x≤1log13x,x>1,若f(a)=2,則a=______.答案:當a≤1時y=2x∴2a=2∴a=1當a>1時y=log13x∴2=loga13∴a=19不成立所以a=1故為:116.從單詞“equation”選取5個不同的字母排成一排,含有“qu”(其中“qu”相連且順序不變)的不同排列共有()A.120個B.480個C.720個D.840個答案:要選取5個字母時首先從其它6個字母中選3個有C63種結(jié)果,再與“qu“組成的一個元素進行全排列共有C63A44=480,故選B.17.曲線x=t+1ty=12(t+1t)(t為參數(shù))的直角坐標方程是______.答案:∵曲線C的參數(shù)方程x=t+1ty=12(t+1t)(t為參數(shù))x=t+1t≥2,可得x的限制范圍是x≥2,再根據(jù)x2=t+1t+2,∴t+1t=x2-2,可得直角坐標方程是:x2=2(y+1),(x≥2),故為:x2=2(y+1),(x≥2).18.已知平面向量a,b,c滿足a+b+c=0,且a與b的夾角為135°,c與b的夾角為120°,|c|=2,則|a|=______.答案:∵a+b+c=0∴三個向量首尾相接后,構(gòu)成一個三角形且a與b的夾角為135°,c與b的夾角為120°,|c|=2,故所得三角形如下圖示:其中∠C=45°,∠A=60°,AB=2∴|a|=AB?Sin∠Asin∠C=6故為:619.中心在坐標原點,離心率為的雙曲線的焦點在y軸上,則它的漸近線方程為()
A.
B.
C.
D.答案:D20.電視機的使用壽命顯像管開關(guān)的次數(shù)有關(guān).某品牌電視機的顯像管開關(guān)了10000次還能繼續(xù)使用的概率是0.96,開關(guān)了15000次后還能繼續(xù)使用的概率是0.80,則已經(jīng)開關(guān)了10000次的電視機顯像管還能繼續(xù)使用到15000次的概率是______.答案:記“開關(guān)了10000次還能繼續(xù)使用”為事件A,記“開關(guān)了15000次后還能繼續(xù)使用”為事件B,根據(jù)題意,易得P(A)=0.96,P(B)=0.80,則P(A∩B)=0.80,由條件概率的計算方法,可得P=P(A∩B)P(A)=0.800.96=56;故為56.21.H:x-y+z=2為坐標空間中一平面,L為平面H上的一直線.已知點P(2,1,1)為L上距離原點O最近的點,則______為L的方向向量.答案:∵x-y+z=2為坐標空間中一平面∴平面的一個法向量是n=(1,-1,1)設(shè)直線L的方向向量為d=(2,b,c)∵L在H上,∴d與平面H的法向量n=(1,-1,1)垂直故d?n=0?2-b+c=0∵P(2,1,1)為直線L上距離原點O最近的點,∴.OP⊥L故OP?d=0?(2,1,1)?(2,b,c)=0?4+b+c=0解得b=-1,c=-3故為:(2,-1,-3)22.用反證法證明“a+b=1”時的反設(shè)為()
A.a(chǎn)+b>1且a+b<1
B.a(chǎn)+b>1
C.a(chǎn)+b>1或a+b<1
D.a(chǎn)+b<1答案:C23.已知|a|<1,|b|<1,求證:<1.答案:證明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0
(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.24.Direchlet函數(shù)定義為:D(t)=1,t∈Q0,t∈CRQ,關(guān)于函數(shù)D(t)的性質(zhì)敘述不正確的是()A.D(t)的值域為{0,1}B.D(t)為偶函數(shù)C.D(t)不是周期函數(shù)D.D(t)不是單調(diào)函數(shù)答案:函數(shù)D(t)是分段函數(shù),值域是兩段的并集,所以值域為{0,1};有理數(shù)和無理數(shù)正負關(guān)于原點對稱,所以函數(shù)D(t)的圖象關(guān)于y軸對稱,所以函數(shù)是偶函數(shù);對于不同的有理數(shù)x對應(yīng)的函數(shù)值相等,所以函數(shù)不是單調(diào)函數(shù);因為任取一個非0有理數(shù),都有有理數(shù)加有理數(shù)為有理數(shù),有理數(shù)加無理數(shù)為無理數(shù),所以函數(shù)D(t)的圖象周期出現(xiàn),所以函數(shù)是周期函數(shù),所以選項C不正確.故選C.25.已知正四棱柱的對角線的長為6,且對角線與底面所成角的余弦值為33,則該正四棱柱的體積等于______.答案::如圖可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的體積等于A1B12?AA1=2故為:226.方程.12
41x
x21-3
9.=0的解集為______.答案:.12
41x
x21-3
9.=9x+2x2-12-4x+3x2-18=0,即x2+x-6=0,故x1=-3,x2=2.故方程的解集為{-3,2}.27.刻畫數(shù)據(jù)的離散程度的度量,下列說法正確的是()
(1)應(yīng)充分利用所得的數(shù)據(jù),以便提供更確切的信息;
(2)可以用多個數(shù)值來刻畫數(shù)據(jù)的離散程度;
(3)對于不同的數(shù)據(jù)集,其離散程度大時,該數(shù)值應(yīng)越?。?/p>
A.(1)和(3)
B.(2)和(3)
C.(1)和(2)
D.都正確答案:C28.過點A(3,5)作圓C:(x-2)2+(y-3)2=1的切線,則切線的方程為______.答案:由圓的一般方程可得圓的圓心與半徑分別為:(2,3);1,當切線的斜率存在,設(shè)切線的斜率為k,則切線方程為:kx-y-3k+5=0,由點到直線的距離公式可得:|2k-3-3k+5|k2+1=1解得:k=-34,所以切線方程為:3x+4y-29=0;當切線的斜率不存在時,直線為:x=3,滿足圓心(2,3)到直線x=3的距離為圓的半徑1,x=3也是切線方程;故為:3x+4y-29=0或x=3.29.設(shè)曲線C的參數(shù)方程為(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為的點的個數(shù)為()
A.1
B.2
C.3
D.4答案:B30.已知平面向量=(3,1),=(x,3),且⊥,則實數(shù)x的值為()
A.9
B.1
C.-1
D.-9答案:C31.若a>b>0,則,,,從大到小是_____答案:>>>解析:,又ab>0,;即。故有:>>>32.在吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()
A.若K2的觀測值為k=6.635,而p(K2≥6.635)=0.010,故我們有99%的把握認為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺病
B.從獨立性檢驗可知有99%的把握認為吸煙與患肺病有關(guān)系時,我們說某人吸煙,那么他有99%的可能患有肺病
C.若從統(tǒng)計量中求出有95%的把握認為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推判出現(xiàn)錯誤
D.以上三種說法都不正確答案:C33.(坐標系與參數(shù)方程選做題)在極坐標系中,點M(ρ,θ)關(guān)于極點的對稱點的極坐標是______.答案:由點的極坐標的意義可得,點M(ρ,θ)關(guān)于極點的對稱點到極點的距離等于ρ,極角為π+θ,故點M(ρ,θ)關(guān)于極點的對稱點的極坐標是(ρ,π+θ),故為(ρ,π+θ).34.某廠生產(chǎn)電子元件,其產(chǎn)品的次品率為5%.現(xiàn)從一批產(chǎn)品中任意的連續(xù)取出2件,寫出其中次品數(shù)ξ的概率分布.答案:依題意,隨機變量ξ~B(2,5%).所以,P(ξ=0)=C20(95%)2=0.9025,P(ξ=1)=C21(5%)(95%)=0.095P(ξ=2)=C22(5%)2=0.0025因此,次品數(shù)ξ的概率分布是:35.關(guān)于斜二測畫法畫直觀圖說法不正確的是()
A.在實物圖中取坐標系不同,所得的直觀圖有可能不同
B.平行于坐標軸的線段在直觀圖中仍然平行于坐標軸
C.平行于坐標軸的線段長度在直觀圖中仍然保持不變
D.斜二測坐標系取的角可能是135°答案:C36.若A(-1,0,1),B(1,4,7)在直線l上,則直線l的一個方向向量為()
A.(1,2,3)
B.(1,3,2)
C.(2,1,3)
D.(3,2,1)答案:A37.已知兩條直線l1:y=x,l2:ax-y=0,其中a為實數(shù),當這兩條直線的夾角在(0,)內(nèi)變動時,a的取值范圍是(
)
A.(0,1)
B.
C.
D.答案:C38.下列四個散點圖中,使用線性回歸模型擬合效果最好的是()
A.
B.
C.
D.
答案:D39.已知點A(1,3),B(4,-1),則與向量同方向的單位向量為()
A.(,-)
B.(,-)
C.(-,)
D.(-,)答案:A40.設(shè)兩圓C1、C2都和兩坐標軸相切,且都過點(4,1),則兩圓心的距離|C1C2|=______.答案:∵兩圓C1、C2都和兩坐標軸相切,且都過點(4,1),故兩圓圓心在第一象限的角平分線上,設(shè)圓心的坐標為(a,a),則有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圓心為(5+22,5+22
)
和(5-22,5-22
),故兩圓心的距離|C1C2|=2[(5+22)-(5-22)]=8,故為:841.一個樣本a,99,b,101,c中五個數(shù)恰成等差數(shù)列,則這個樣本的極差與標準差分別為(
)。答案:4;42.已知AB和CD是曲線(t為參數(shù))的兩條相交于點P(2,2)的弦,若AB⊥CD,且|PA|·|PB|=|PC|·
|PD|,
(Ⅰ)將曲線(t為參數(shù))化為普通方程,并說明它表示什么曲線;
(Ⅱ)試求直線AB的方程。答案:解:(Ⅰ)由y=4t得y2=16t2,而x=4t2,∴y2=4x,它表示拋物線;(Ⅱ)設(shè)直線AB和CD的傾斜角分別為α,β,則直線AB和CD的參數(shù)方程分別為,把①代入y2=4x中,得t2sin2α+(4sinα-4cosα)t-4=0,③依題意知sinα≠0且方程③的判別式Δ=16(sinα-cosα)2+16sin2α>0,∴方程③有兩個不相等的實數(shù)解t1,t2,則由t的幾何意義知|PA|=|t1|,|PB|=|t2|,∴|PA|·|PB|=|t1t2|=,同理|PC|·|PD|=,由|PA|·|PB|=|PC|·|PD|知,即sin2α=sin2β,∵0≤α,β<π,∴α=π-β,∵AB⊥CD,∴β=α+90°或α=β+90°,∴直線AB的傾斜角∴kAB=1或kAB=-1,故直線AB的方程為y=x或x+y-4=0。43.隨機變量ξ服從二項分布ξ~B(n,p),且Eξ=300,Dξ=200,則p等于()
A.
B.0
C.1
D.答案:D44.在平面直角坐標系中,經(jīng)伸縮變換后曲線方程變換為橢圓方程,此伸縮變換公式是(
)A.B.C.D.答案:B解析:解:因為在平面直角坐標系中,經(jīng)伸縮變換后曲線方程變換為橢圓方程,設(shè)變換為,將其代入方程中,得到x,y的關(guān)系式,對應(yīng)相等可知,選B45.設(shè)與都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關(guān)于與的敘述正確的是()
A.=
B.與同向
C.∥
D.與有相同的位置向量答案:C46.一組數(shù)據(jù)12,15,24,25,31,31,36,36,37,39,44,49,50的中位數(shù)是()
A.31
B.36
C.35
D.34答案:B47.已知x,y之間的一組數(shù)據(jù):
x0123y1357則y與x的回歸方程必經(jīng)過()A.(2,2)B.(1,3)C.(1.5,4)D.(2,5)答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4∴這組數(shù)據(jù)的樣本中心點是(1.5,4)根據(jù)線性回歸方程一定過樣本中心點,∴線性回歸方程y=a+bx所表示的直線必經(jīng)過點(1.5,4)故選C48.圓(x+3)2+(y-1)2=25上的點到原點的最大距離是()
A.5-
B.5+
C
D.10答案:B49.若則實數(shù)λ的值是()
A.
B.
C.
D.答案:D50.已知空間三點A(1,1,1)、B(-1,0,4)、C(2,-2,3),則AB與CA的夾角θ的大小是
______答案:AB=(-2,-1,3),CA=(-1,3,-2),cos<AB,CA>=(-2)×(-1)+(-1)×3+3×(-2)14?14=-714=-12,∴θ=<AB,CA>=120°.故為120°第2卷一.綜合題(共50題)1.某工廠生產(chǎn)產(chǎn)品,用傳送帶將產(chǎn)品送到下一道工序,質(zhì)檢人員每隔十分鐘在傳送帶的某一個位置取一件檢驗,則這種抽樣方法是()A.簡單隨機抽樣B.系統(tǒng)抽樣C.分層抽樣D.非上述答案答案:本題符合系統(tǒng)抽樣的特征:總體中各單位按一定順序排列,根據(jù)樣本容量要求確定抽選間隔,然后隨機確定起點,每隔一定的間隔抽取一個單位的一種抽樣方式.故選B.2.已知正整數(shù)指數(shù)函數(shù)f(x)的圖象經(jīng)過點(3,27),
(1)求函數(shù)f(x)的解析式;
(2)求f(5);
(3)函數(shù)f(x)有最值嗎?若有,試求出;若無,說明原因.答案:(1)設(shè)正整數(shù)指數(shù)函數(shù)為f(x)=ax(a>0,a≠1,x∈N+),因為函數(shù)f(x)的圖象經(jīng)過點(3,27),所以f(3)=27,即a3=27,解得a=3,所以函數(shù)f(x)的解析式為f(x)=3x(x∈N+).(2)由f(x)=3x(x∈N+),可得f(5)=35=243.(3)∵f(x)的定義域為N+,且在定義域上單調(diào)遞增,∴f(x)有最小值,最小值是f(1)=3;f(x)無最大值.解析:已知正整數(shù)指數(shù)函數(shù)f(x)的圖象經(jīng)過點(3,27),(1)求函數(shù)f(x)的解析式;(2)求f(5);(3)函數(shù)f(x)有最值嗎?若有,試求出;若無,說明原因.3.2008年北京奧運會期間,計劃將5名志愿者分配到3個不同的奧運場館參加接待工作,每個場館至少分配一名志愿者的方案種數(shù)為()A.540B.300C.150D.180答案:將5個人分成滿足題意的3組有1,1,3與2,2,1兩種,分成1、1、3時,有C53?A33種分法,分成2、2、1時,有C25C23A22?A33種分法,所以共有C53?A33+C25C23A22?A33=150種分法,故選C.4.過點P(4,-1)且與直線3x-4y+6=0垂直的直線方程是(
)
A.4x+3y-13=0
B.4x-3y-19=0
C.3x-4y-16=0
D.3x+4y-8=0答案:A5.若隨機向一個半徑為1的圓內(nèi)丟一粒豆子(假設(shè)該豆子一定落在圓內(nèi)),則豆子落在此圓內(nèi)接正三角形內(nèi)的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內(nèi)接正三角形的邊長為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內(nèi)的概率P=334π=334π故為:334π6.已知隨機變量ξ服從二項分布ξ~B(6,),則E(2ξ+4)=()
A.10
B.4
C.3
D.9答案:A7.方程組的解集是[
]A.{5,1}
B.{1,5}
C.{(5,1)}
D.{(1,5)}答案:C8.直線l過點(-3,1),且它的一個方向向量n=(2,-3),則直線l的方程為______.答案:設(shè)直線l的另一個方向向量為a=(1,k),其中k是直線的斜率可得n=(2,-3)與a=(1,k)互相平行∴12=k-3?k=-32所以直線l的點斜式方程為:y-1=-32(x+3)化成一般式:3x+2y+7=0故為:3x+2y+7=09.把4名男生和4名女生排成一排,女生要排在一起,不同排法的種數(shù)為()
A.A88
B.A55A44
C.A44A44
D.A85答案:B10.兩條平行直線3x+4y-12=0與ax+8y+11=0之間的距離為(
)
A.
B.
C.7
D.答案:D11.已知,求證:答案:證明略解析:∵
∴①
又∵②
③由①②③得
∴,又不等式①、②、③中等號成立的條件分別為,,故不能同時成立,從而.12.下面是某工藝品廠隨機抽取兩個批次的初加工矩形寬度與長度的比值樣本:
甲批次:0.598
0.625
0.628
0.595
0.639
乙批次:0.618
0.613
0.592
0.622
0.620
我們將比值為0.618的矩形稱為“完美矩形”,0.618為標準值,根據(jù)上述兩個樣本來估計兩個批次的總體平均數(shù),正確結(jié)論是()
A.甲批次的總體平均數(shù)與標準值更接近
B.乙批次的總體平均數(shù)與標準值更接近
C.兩個批次總體平均數(shù)與標準值接近程度相同
D.以上選項均不對答案:A13.在吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()
A.若K2的觀測值為k=6.635,而p(K2≥6.635)=0.010,故我們有99%的把握認為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺病
B.從獨立性檢驗可知有99%的把握認為吸煙與患肺病有關(guān)系時,我們說某人吸煙,那么他有99%的可能患有肺病
C.若從統(tǒng)計量中求出有95%的把握認為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推判出現(xiàn)錯誤
D.以上三種說法都不正確答案:C14.如圖,在扇形OAB中,∠AOB=60°,C為弧AB上且與A,B不重合的一個動點,OC=xOA+yOB,若u=x+λy,(λ>0)存在最大值,則λ的取值范圍為()A.(12,1)B.(1,3)C.(12,2)D.(13,3)答案:設(shè)射線OB上存在為B',使OB′=1λOB,AB'交OC于C',由于OC=xOA+yOB=xOA+λy?1λOB=xOA+λy?OB′,設(shè)OC=tOC′,OC′=x′OA+λy′OB′,由A,B',C'三點共線可知x'+λy'=1,所以u=x+2y=tx'+t?2y'=t,則u=|OC||OC′|存在最大值,即在弧AB(不包括端點)上存在與AB'平行的切線,所以λ∈(12,2).故選C.15.已知△ABC的頂點坐標為A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,則AD的長為______.答案:D在BC上,且S△ABC=3S△ABD,∴D點為BC邊上的三等分點則D點分線段BC所成的比為12則易求出D點坐標為:x=-2+12×41+12y=-1+12×51+12∴x=0y=1故AD=32故為:3216.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C17.已知橢圓C的左右焦點坐標分別是(-2,0),(2,0),離心率22,直線y=x-1與橢圓C交于不同的兩點A,B.
(1)求橢圓C的方程;
(2)求弦AB的長度.答案:(本小題滿分13分)(1)依題意可設(shè)橢圓C的方程為x2a2+y2b2=1(a>b>0)…(1分)則c=2e=ca=22,解得a=22c=2…(3分)∴b2=a2-c2=8-4=4…(5分)∴橢圓C的方程為x28+y24=1…(6分)(2)設(shè)A(x1,y1),B(x2,y2)…(7分)聯(lián)立方程x28+y24=1y=x-1,消去y,并整理得:3x2-4x-6=0…(9分)∴x1+x2=43x1?x2=-2…(10分)∴|AB|=1+12|x2-x1|=2[(x1+x2)2-4x1x2]
=2[(43)2-4×(-2)]=4113…(12分)∴|AB|=4113…(13分)18.條件語句的一般形式如圖所示,其中B表示的是()
A.條件
B.條件語句
C.滿足條件時執(zhí)行的內(nèi)容
D.不滿足條件時執(zhí)行的內(nèi)容
答案:C19.
以下四組向量中,互相平行的有()組.
A.一
B.二
C.三
D.四答案:D20.三棱柱ABC-A1B1C1中,M、N分別是BB1、AC的中點,設(shè),,=,則等于()
A.
B.
C.
D.答案:A21.每一噸鑄鐵成本y
(元)與鑄件廢品率x%建立的回歸方程y=56+8x,下列說法正確的是()A.廢品率每增加1%,成本每噸增加64元B.廢品率每增加1%,成本每噸增加8%C.廢品率每增加1%,成本每噸增加8元D.如果廢品率增加1%,則每噸成本為56元答案:∵回歸方程y=56+8x,∴當x增加一個單位時,對應(yīng)的y要增加8個單位,這里是平均增加8個單位,故選C.22.方程2x2+ky2=1表示的曲線是長軸在y軸的橢圓,則實數(shù)k的范圍是()A.(0,+∞)B.(2,+∞)C.(0,2)D.(2,0)答案:橢圓方程化為x212+y21k=1.焦點在y軸上,則1k>12,即k<2.又k>0,∴0<k<2.故選C.23.已知
p:所有國產(chǎn)手機都有陷阱消費,則¬p是()
A.所有國產(chǎn)手機都沒有陷阱消費
B.有一部國產(chǎn)手機有陷阱消費
C.有一部國產(chǎn)手機沒有陷阱消費
D.國外產(chǎn)手機沒有陷阱消費答案:C24.設(shè)a=0.7,b=0.8,c=log30.7,則()
A.c<b<a
B.c<a<b
C.a(chǎn)<b<c
D.b<a<c答案:B25.(1)在數(shù)軸上求一點的坐標,使它到點A(9)與到點B(-15)的距離相等;
(2)在數(shù)軸上求一點的坐標,使它到點A(3)的距離是它到點B(-9)的距離的2倍.答案:(1)設(shè)該點為M(x),根據(jù)題意,得A、M兩點間的距離為d(A,M)=|x-9|,B、M兩點間的距離為d(M,B)=|-15-x|,結(jié)合題意,可得|x-9|=|-15-x|,∴x-9=15+x或x-9=-15-x,解之得x=-3,得M的坐標為-3故所求點的坐標為-3.(2)設(shè)該點為N(x'),則A、N兩點間的距離為d(A,N)=|x'-3|,B、N兩點間的距離為d(N,B)=|-9-x'|,根據(jù)題意有|x'-3|=2|9+x'|,∴x'-3=18+2x'或x'-3=-18-2x',解之得x'=-21,或x'=-5.故所求點的坐標是-21或-5.26.用隨機數(shù)表法從100名學(xué)生(男生35人)中選20人作樣本,男生甲被抽到的可能性為()A.15B.2035C.35100D.713答案:由題意知,本題是一個等可能事件的概率,試驗發(fā)生包含的事件是用隨機數(shù)表法從100名學(xué)生選一個,共有100種結(jié)果,滿足條件的事件是抽取20個,∴根據(jù)等可能事件的概率公式得到P=20100=15,故選A.27.已知求證:答案:證明見解析解析:證明:28.某飲料公司招聘了一名員工,現(xiàn)對其進行一項測試,以便確定工資級別.公司準備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料.若4杯都選對,則月工資定位3500元;若4杯選對3杯,則月工資定為2800元,否則月工資定為2100元,今X表示此人選對A飲料的杯數(shù),假設(shè)此人對A和B兩種飲料沒有鑒別能力.
(1)求X的分布列;
(2)求此員工月工資的期望.答案:(1)X的所有可能取值為0,1,2,3,4,P(X=0)=1C48=170P(X=1)=C14C34C48=1670P(X=2)=C24C24C48=3670P(X=3)=C14C34C48=1670P(X=4)=1C48=170(2)此員工月工資Y的所有可能取值有3500、2800、2100,P(Y=3500)=P(X=4)=1C48=170P(Y=2800)=P(X=3)=C14C34C48=1670P(Y=2100)=P(X=0)+P(X=1)+P(X=2)=5370EY=3500×170+2800×1670+2100×5370=228029.與橢圓+y2=1共焦點且過點P(2,1)的雙曲線方程是()
A.-y2=1
B.-y2=1
C.-=1
D.x2-=1答案:B30.有一段“三段論”推理是這樣的:對于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點,因為函數(shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f'(0)=0,所以,x=0是函數(shù)f(x)=x3的極值點.以上推理中()
A.大前提錯誤
B.小前提錯誤
C.推理形式錯誤
D.結(jié)論正確答案:A31.如圖,圓心角∠AOB=120°,P是AB上任一點(不與A,B重合),點C在AP的延長線上,則∠BPC等于______.
答案:解:設(shè)點E是優(yōu)弧AB(不與A、B重合)上的一點,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故為60°.32.已知△ABC的頂點坐標分別為A(2,3),B(-1,0),C(2,0),則△ABC的周長是()
A.2
B.6+
C.3+2
D.6+3答案:D33.若一輛汽車每天行駛的路程比原來多19km,則該汽車在8天內(nèi)行駛的路程s(km)就超過2200km;若它每天行駛的路程比原來少12km,則它行駛同樣的路程s(km)就得花9天多的時間。這輛汽車原來每天行駛的路程(km)的范圍是(
)
A.(259,260)
B.(258,260)
C.(257,260)
D.(256,260)答案:D34.已知直線的斜率為3,則此直線的傾斜角為()A.30°B.60°C.45°D.120°答案:∵直線的斜率為3,∴直線傾斜角α滿足tanα=3結(jié)合α∈[0°,180°),可得α=60°故選:B35.一直線傾斜角的正切值為34,且過點P(1,2),則直線方程為______.答案:因為直線傾斜角的正切值為34,即k=3,又直線過點P(1,2),所以直線的點斜式方程為y-2=34(x-1),整理得,3x-4y+5=0.故為3x-4y+5=0.36.(坐標系與參數(shù)方程選做題)在平面直角坐標系xOy中,曲線C1與C2的參數(shù)方程分別為x=ty=t(t為參數(shù))和x=2cosθy=2sinθ(θ為參數(shù)),則曲線C1與C2的交點坐標為______.答案:在平面直角坐標系xOy中,曲線C1與C2的普通方程分別為y2=x,x2+y2=2.解方程組y2=xx2
+y2=2
可得x=1y=1,故曲線C1與C2的交點坐標為(1,1),故為(1,1).37.求兩條平行直線3x-4y-11=0與6x-8y+4=0的距離是()
A.3
B.
C.
D.4答案:B38.若矩陣A=是表示我校2011屆學(xué)生高二上學(xué)期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學(xué)成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分數(shù).若經(jīng)過一定量的努力,各科能前進的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分數(shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()
A.語文
B.數(shù)學(xué)
C.外語
D.都一樣答案:B39.已知數(shù)列{an}的前n項和Sn=an2+bn=c
(a、b、c∈R),則“c=0”是“{an}是等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分也非必要條件答案:數(shù)列{an}的前n項和Sn=an2+bn+c根據(jù)等差數(shù)列的前n項和的公式,可以看出當c=0時,Sn=an2+bn表示等差數(shù)列的前n項和,則數(shù)列是一個等差數(shù)列,當數(shù)列是一個等差數(shù)列時,表示前n項和時,c=0,故前者可以推出后者,后者也可以推出前者,∴前者是后者的充要條件,故選C.40.如圖是容量為150的樣本的頻率分布直方圖,則樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為()A.12B.48C.60D.80答案:根據(jù)頻率分布直方圖,樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為0.08×4×150=48故選B.41.如圖,在梯形ABCD中,對角線AC和BD交于點O,E、F分別是AC和BD的中點,分別寫出
(1)圖中與EF、CO共線的向量;
(2)與EA相等的向量.答案:(1)由圖可知,與EF共線的向量有:CD、AB;與CO共線的向量有:CE、CA、OE、OA、EA;(2)由E為CA的中點可知,CE=EA,即與EA相等的向量為CE;42.若=(2,-3,1),=(2,0,3),=(0,2,2),則?(+)=()
A.4
B.15
C.7
D.3答案:D43.把一枚硬幣連續(xù)拋擲兩次,事件A=“第一次出現(xiàn)正面”,事件B=“第二次出現(xiàn)正面”,則P(B|A)等于(
)
A.
B.
C.
D.答案:A44.已知直線l經(jīng)過點P(3,1),且被兩平行直線l1;x+y+1=0和l2:x+y+6=0截得的線段之長為5,求直線l的方程.答案:解法一:若直線l的斜率不存在,則直線l的方程為x=3,此時與l1、l2的交點分別為A′(3,-4)或B′(3,-9),截得的線段AB的長|AB|=|-4+9|=5,符合題意.若直線l的斜率存在,則設(shè)直線l的方程為y=k(x-3)+1.解方程組y=k(x-3)+1x+y+1=0得A(3k-2k+1,-4k-1k+1).解方程組y=k(x-3)+1x+y+6=0得B(3k-7k+1,-9k-1k+1).由|AB|=5.得(3k-2k+1-3k-7k+1)2+(-4k-1k+1+9k-1k+1)2=52.解之,得k=0,直線方程為y=1.綜上可知,所求l的方程為x=3或y=1.解法二:由題意,直線l1、l2之間的距離為d=|1-6|2=522,且直線L被平行直線l1、l2所截得的線段AB的長為5,設(shè)直線l與直線l1的夾角為θ,則sinθ=5225=22,故θ=45°.由直線l1:x+y+1=0的傾斜角為135°,知直線l的傾斜角為0°或90°,又由直線l過點P(3,1),故直線l的方程為:x=3或y=1.解法三:設(shè)直線l與l1、l2分別相交A(x1,y1)、B(x2,y2),則x1+y1+1=0,x2+y2+6=0.兩式相減,得(x1-x2)+(y1-y2)=5.①又(x1-x2)2+(y1-y2)2=25.②聯(lián)立①、②可得x1-x2=5y1-y2=0或x1-x2=0y1-y2=5由上可知,直線l的傾斜角分別為0°或90°.故所求的直線方程為x=3或y=1.45.某超市推出如下優(yōu)惠方案:
(1)一次性購物不超過100元不享受優(yōu)惠;
(2)一次性購物超過100元但不超過300元的一律九折;
(3)一次性購物超過300元的一律八折,有人兩次購物分別付款80元,252元.
如果他一次性購買與上兩次相同的商品,則應(yīng)付款______.答案:該人一次性購物付款80元,據(jù)條件(1)、(2)知他沒有享受優(yōu)惠,故實際購物款為80元;另一次購物付款252元,有兩種可能,其一購物超過300元按八折計,則實際購物款為2520.8=315元.其二購物超過100元但不超過300元按九折計算,則實際購物款為2520.9=280元.故該人兩次購物總價值為395元或360元,若一次性購買這些商品應(yīng)付款316元或288元.故為316元或288元.46.已知、分別是與x軸、y軸方向相同的單位向量,且=-3+6,=-6+4,=--6,則一定共線的三點是()
A.A,B,C
B.A,B,D
C.A,C,D
D.B,C,D答案:C47.用樣本估計總體,下列說法正確的是()A.樣本的結(jié)果就是總體的結(jié)果B.樣本容量越大,估計就越精確C.樣本容量越小,估計就越精確D.樣本的方差可以近似地反映總體的平均狀態(tài)答案:用樣本估計總體時,樣本容量越大,估計就越精確,樣本的平均值可以近似地反映總體的平均狀態(tài),樣本的標準差可以近似地反映總體的波動狀態(tài),數(shù)據(jù)的方差越大,說明數(shù)據(jù)越不穩(wěn)定,樣本的結(jié)果可以粗略的估計總體的結(jié)果,但不就是總體的結(jié)果.故選B.48.點(1,2)到直線x+2y+5=0的距離為______.答案:點(1,2)到直線x+2y+5=0的距離為d=|1+2×2+5|12+22=25故為:2549.已知圓錐的母線長與底面半徑長之比為3:1,一個正方體有四個頂點在圓錐的底面內(nèi),另外的四個頂點在圓錐的側(cè)面上(如圖),則圓錐與正方體的表面積之比為(
)
A.π:1
B.3π:1
C.3π:2
D.3π:4
答案:D50.在△ABC中,D為AB上一點,M為△ABC內(nèi)一點,且滿足AD=34AB,AM=AD+35BC,則△AMD與△ABC的面積比為()A.925B.45C.916D.920答案:AP=AD+DP=AD+35BC,DP=35BC.∴三角形ADP的高三角形ABC=ADAB=34,∴S△APDS△ABC=35?34=920.故選D.第3卷一.綜合題(共50題)1.不等式|x+3|-|x-1|≤a2-3a對任意實數(shù)x恒成立,則實數(shù)a的取值范圍為()
A.(-∞,-1]∪[4,+∞)
B.(-∞,-2]∪[5,+∞)
C.[1,2]
D.(-∞,1]∪[2,+∞)答案:A2.數(shù)據(jù):1,1,3,3的眾數(shù)和中位數(shù)分別是()
A.1或3,2
B.3,2
C.1或3,1或3
D.3,3答案:A3.對賦值語句的描述正確的是(
)
①可以給變量提供初值
②將表達式的值賦給變量
③可以給一個變量重復(fù)賦值
④不能給同一變量重復(fù)賦值A(chǔ).①②③B.①②C.②③④D.①②④答案:A解析:試題分析:在表述一個算法時,經(jīng)常要引入變量,并賦給該變量一個值。用來表明賦給某一個變量一個具體的確定值的語句叫做賦值語句。賦值語句的一般格式是:變量名=表達式其中“=”為賦值號.故選A。點評:簡單題,賦值語句的一般格式是:變量名=表達式其中"="為賦值號。4.曲線C:x=t-2y=1t+1(t為參數(shù))的對稱中心坐標是______.答案:曲線C:x=t-2y=1t+1(t為參數(shù))即y-1=1x+2,其對稱中心為(-2,1).故為:(-2,1).5.鐵路托運行李,從甲地到乙地,按規(guī)定每張客票托運行李不超過50kg時,每千克0.2元,超過50kg時,超過部分按每千克0.25元計算,畫出計算行李價格的算法框圖.答案:程序框圖:6.已知l∥α,且l的方向向量為(2,-8,1),平面α的法向量為(1,y,2),則y=______.答案:∵l∥α,∴l(xiāng)的方向向量(2,-8,1)與平面α的法向量(1,y,2)垂直,∴2×1-8×y+2=0,解得y=12.故為12.7.若指數(shù)函數(shù)f(x)與冪函數(shù)g(x)的圖象相交于一點(2,4),則f(x)=______,g(x)=______.答案:設(shè)f(x)=ax(a>0且a≠1),g(x)=xα將(2,4)代入兩個解析式得4=a2,4=2α解得a=2,α=2故為:f(x)=2x,g(x)=x28.已知a,b,c是三條直線,且a∥b,a與c的夾角為θ,那么b與c夾角是______.答案:∵a∥b,∴b與c夾角等于a與c的夾角又∵a與c的夾角為θ∴b與c夾角也為θ故為:θ9.已知P(x,y)是橢圓x24+y2=1上的點,求M=x+2y的取值范圍.答案:∵x24+y2=1的參數(shù)方程是x=2cosθy=sinθ(θ是參數(shù))∴設(shè)P(2cosθ,sinθ)(4分)∴M=x+2y=2cosθ+2sinθ=22sin(θ+π4)
(7分)∴M=x+2y的取值范圍是[-22,22].(10分)10.某超市推出如下優(yōu)惠方案:
(1)一次性購物不超過100元不享受優(yōu)惠;
(2)一次性購物超過100元但不超過300元的一律九折;
(3)一次性購物超過300元的一律八折,有人兩次購物分別付款80元,252元.
如果他一次性購買與上兩次相同的商品,則應(yīng)付款______.答案:該人一次性購物付款80元,據(jù)條件(1)、(2)知他沒有享受優(yōu)惠,故實際購物款為80元;另一次購物付款252元,有兩種可能,其一購物超過300元按八折計,則實際購物款為2520.8=315元.其二購物超過100元但不超過300元按九折計算,則實際購物款為2520.9=280元.故該人兩次購物總價值為395元或360元,若一次性購買這些商品應(yīng)付款316元或288元.故為316元或288元.11.函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和為a,則a的值為
______.答案:∵y=ax與y=loga(x+1)具有相同的單調(diào)性.∴f(x)=ax+loga(x+1)在[0,1]上單調(diào),∴f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化簡得1+loga2=0,解得a=12故為:1212.如圖所示,有兩個獨立的轉(zhuǎn)盤(A)、(B),其中三個扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個轉(zhuǎn)盤玩游戲,規(guī)則是:依次隨機轉(zhuǎn)動兩個轉(zhuǎn)盤再隨機停下(指針固定不動,當指針恰好落在分界線時,則這次轉(zhuǎn)動無效,重新開始)為一次游戲,記轉(zhuǎn)盤(A)指針所對的數(shù)為X轉(zhuǎn)盤(B)指針對的數(shù)為Y設(shè)X+Yξ,每次游戲得到的獎勵分為ξ分.
(1)求X<2且Y>1時的概率
(2)某人玩12次游戲,求他平均可以得到多少獎勵分?答案:(1)由幾何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;
P(y=1)=13,P(y=2)=12,P(y=3)=16.則P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范圍為2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布為:ξ23456P11873613361136112他平均每次可得到的獎勵分為Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的獎勵分為12×Eξ=50.13.若回歸直線方程中的回歸系數(shù)b=0時,則相關(guān)系數(shù)r=______.答案:由于在回歸系數(shù)b的計算公式中,與相關(guān)指數(shù)的計算公式中,它們的分子相同,故為:0.14.已知拋物線x2=4y上的點p到焦點的距離是10,則p點坐標是
______.答案:根據(jù)拋物線方程可求得焦點坐標為(0,1)根據(jù)拋物線定義可知點p到焦點的距離與到準線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點坐標是(±6,9)故為:(±6,9)15.在某項體育比賽中,七位裁判為一選手打出分數(shù)的莖葉圖如圖,去掉一個最高分和一個攝低分后,該選手的平均分為()A.90B.91C.92D.93答案:由圖表得到評委為該選手打出的7個分數(shù)數(shù)據(jù)為:89,90,90,93,93,94,95.去掉一個最低分89,去掉一個最高分95,該選手得分的平均數(shù)為15(90+90+93+93+94)=92.故選C.16.在極坐標系中,極點到直線ρcosθ=2的距離為______.答案:直線ρcosθ=2即x=2,極點的直角坐標為(0,0),故極點到直線ρcosθ=2的距離為2,故為2.17.下列命題:
①垂直于同一直線的兩直線平行;
②垂直于同一直線的兩平面平行;
③垂直于同一平面的兩直線平行;
④垂直于同一平面的兩平面平行;
其中正確的有()
A.③④
B.①②④
C.②③
D.②③④答案:C18.已知直線y=kx+1與橢圓x25+y2m=1恒有公共點,則實數(shù)m的取值范圍為()A.m≥1B.m≥1,或0<m<1C.0<m<5,且m≠1D.m≥1,且m≠5答案:由于直線y=kx+1恒過點M(0,1)要使直線y=kx+1與橢圓x25+y2m=1恒有公共點,則只要M(0,1)在橢圓的內(nèi)部或在橢圓上從而有m>0m≠505+1m≤1,解可得m≥1且m≠5故選D.19.一部記錄影片在4個單位輪映,每一單位放映一場,則不同的輪映方法數(shù)有()A.16B.44C.A44D.43答案:本題可以看做把4個單位看成四個位置,在四個位置進行全排列,故有A44種結(jié)果,故選C.20.設(shè)點P對應(yīng)的復(fù)數(shù)為-3+3i,以原點為極點,實軸正半軸為極軸建立極坐標系,則點P的極坐標為()
A.(3,π)
B.(-3,π)
C.(3,π)
D.(-3,π)答案:A21.雙曲線x2a2-y2b2=1,(a>0,b>0)的一條漸近線方程是y=3x,坐標原點到直線AB的距離為32,其中A(a,0),B(0,-b).
(1)求雙曲線的方程;
(2)若B1是雙曲線虛軸在y軸正半軸上的端點,過點B作直線交雙曲線于點M,N,求B1M⊥B1N時,直線MN的方程.答案:(1)∵A(a,0),B(0,-b),∴設(shè)直線AB:xa-yb=1∴ba=3aba2+b2=32,∴a=3b=3,∴雙曲線方程為:x23-y29=1.(2)∵雙曲線方程為:x23-y29=1,∴A1(-3,0),A2(3,0),設(shè)P(x0,y0),∴kPA1=y0x0+3,kPA2=y0x0-3,∴k1k2=y02x02-3=3x02-9x02-3=3.B(0,-3)B1(0,3),設(shè)M(x1,y1),N(x2,y2)∴設(shè)直線l:y=kx-3,∴y=kx-33x2-y2=9,∴3x2-(kx-3)2=9.(3-k2)x2+6kx-18=0,∴x1+x2=6kk2-3
y1+y2=k(x1+x2)-6=18k2-3x1x2=18k2-3
y1y2=k2(x1x2)-3k(x1+x2)+9∵B1M=(x1,y1-3)
B1N=(x2,y2-3)∵B1M?B1N=0∴x1x2+y1y2-3(y1+y2)+9=018k2-3+9-54k2-3+9=0k2=5,即k=±5代入(1)有解,∴l(xiāng)MN:y=±5x-3.22.已知
p:所有國產(chǎn)手機都有陷阱消費,則¬p是()
A.所有國產(chǎn)手機都沒有陷阱消費
B.有一部國產(chǎn)手機有陷阱消費
C.有一部國產(chǎn)手機沒有陷阱消費
D.國外產(chǎn)手機沒有陷阱消費答案:C23.某海域有A、B兩個島嶼,B島在A島正東40海里處.經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線像一個橢圓,其焦點恰好是A、B兩島.曾有漁船在距A島正西20海里發(fā)現(xiàn)過魚群.某日,研究人員在A、B兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),A、B兩島收到魚群反射信號的時間比為5:3.你能否確定魚群此時分別與A、B兩島的距離?答案:以AB的中點為原點,AB所在直線為x軸建立直角坐標系設(shè)橢圓方程為:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因為焦點A的正西方向橢圓上的點為左頂點,所以a-c=20------(5分)又|AB|=2c=40,則c=20,a=40,故b=203------(7分)所以魚群的運動軌跡方程是x21600+y21200=1------(8分)由于A,B兩島收到魚群反射信號的時間比為5:3,因此設(shè)此時距A,B兩島的距離分別為5k,3k-------(10分)由橢圓的定義可知5k+3k=2×40=80?k=10--------(13分)即魚群分別距A,B兩島的距離為50海里和30海里.------(14分)24.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為()
A.內(nèi)切
B.相交
C.外切
D.相離答案:B25.已知圓C:x2+y2-4x-5=0.
(1)過點(5,1)作圓C的切線,求切線的方程;
(2)若圓C的弦AB的中點P(3,1),求AB所在直線方程.答案:由C:x2+y2-4x-5=0得圓的標準方程為(x-2)2+y2=9-----------(2分)(1)顯然x=5為圓的切線.------------------------(4分)另一方面,設(shè)過(5,1)的圓的切線方程為y-1=k(x-5),即kx-y+1-5k=0;所以d=|2k-5k+1|k2+1=3,解得k=-43于是切線方程為4x+3y-23=0和x=5.------------------------(7分)(2)設(shè)所求直線與圓交于A,B兩點,其坐標分別為(x1,y1)B(x2,y2)則有(x1-2)2+y21=9(x2-2)2+y22=9兩式作差得(x1+x2-4)(x2-x1)+(y2+y1)(y2-y1)=0--------------(10分)因為圓C的弦AB的中點P(3,1),所以(x2+x1)=6,(y2+y1)=2
所以y2-y1x2-x1=-1,故所求直線方程為
x+y-4=0-----------------(14分)26.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的(
)
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件答案:C27.紙制的正方體的六個面根據(jù)其方位分別標記為上、下、東、南、西、北.現(xiàn)在沿該正方體的一些棱將正方體剪開、外面朝上展平,得到右側(cè)的平面圖形,則標“△”的面的方位()
A.南
B.北
C.西
D.下
答案:B28.已知l1、l2是過點P(-2,0)的兩條互相垂直的直線,且l1、l2與雙曲線y2-x2=1各有兩個交點,分別為A1、B1和A2、B2.
(1)求l1的斜率k1的取值范圍;
(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)顯然l1、l2斜率都存在,否則l1、l2與曲線不相交.設(shè)l1的斜率為k1,則l1的方程為y=k1(x+2).聯(lián)立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根據(jù)題意得k12-1≠0,②△1>0,即有12k12-4>0.③完全類似地有1k21-1≠0,④△2>0,即有12?1k21-4>0,⑤從而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦長公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全類似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.從而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).29.已知直線l1:(k-3)x+(4-k)y+1=0,與l2:2(k-3)x-2y+3=0,平行,則k的值是______.答案:當k=3時兩條直線平行,當k≠3時有2=-24-k≠3
所以
k=5故為:3或5.30.如圖所示,I為△ABC的內(nèi)心,求證:△BIC的外心O與A、B、C四點共圓.答案:證明:連接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是內(nèi)心知∠ABC=2∠IBC.從而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四點共圓.31.圓的極坐標方程是ρ=2cosθ+2sinθ,則其圓心的極坐標是()
A.(2,)
B.(2,)
C.(1,)
D.(1,)答案:A32.已知函數(shù)f(x)=x21+x2.
(1)求f(2)與f(12),f(3)與f(13);
(2)由(1)中求得結(jié)果,你能發(fā)現(xiàn)f(x)與f(1x)有什么關(guān)系?并證明你的結(jié)論;
(3)求f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)的值.答案:(1)f(2)=45,f(12)=15…1分f(3)=910,f(13)=110…2分(2)f(x)+f(1x)=1…5分證:f(x)+f(1x)=x21+x2+(1x)21+(1x)2=x21+x2+11+x2=1…8分(3)f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)=f(1)+[f(2)+f(12)]+[f(3)+f(13)]+…+[f(2013)+f(12013)]=12+2012=40252…12分33.雙曲線x2n-y2=1(n>1)的兩個焦點為F1,F(xiàn)2,P在雙曲線上,且滿足|PF1|+|PF2|=2n+2,則△PF1F2的面積為______.答案:令|PF1|=x,|PF2|=y,依題意可知x+y=2n+2x-y=2n解得x=n+2+n,y=n+2-n,∴x2+y2=(2n+2+n)2+(2n+2-n)2=4n+4∵|F1F2|=2n+1∴|F1F2|2=4n+4∴x2+y2|F1F2|2∴△PF1F2為直角三角形∴△PF1F2的面積為12xy=(2n+2+n)(n+2-n)=1故為:1.34.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因為向量a=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度國家級林木種植與銷售合作協(xié)議4篇
- 2024項目管理:招投標策略與協(xié)議執(zhí)行要點版
- 二零二五年度旅行社與茶館餐飲服務(wù)合作協(xié)議4篇
- 二零二五年度水文地質(zhì)勘探打井施工合作協(xié)議3篇
- 二零二五年度可再生能源項目投資合作協(xié)議4篇
- 2024音樂素材及視頻素材一次性購買使用合同
- 二零二五年度綠色建筑認證施工承包合同2篇
- 二零二五年度融資租賃抵押借款合同范本3篇
- 2025年星級酒店客房清潔與消毒服務(wù)合同3篇
- 二零二五年度新型環(huán)保煤炭開采居間代理合同范本4篇
- 第二章 運營管理戰(zhàn)略
- 《三本白皮書》全文內(nèi)容及應(yīng)知應(yīng)會知識點
- 專題14 思想方法專題:線段與角計算中的思想方法壓軸題四種模型全攻略(解析版)
- 醫(yī)院外來器械及植入物管理制度(4篇)
- 圖像識別領(lǐng)域自適應(yīng)技術(shù)-洞察分析
- 港口與港口工程概論
- 《念珠菌感染的治療》課件
- 新概念英語第二冊考評試卷含答案(第49-56課)
- 商業(yè)倫理與企業(yè)社會責(zé)任(山東財經(jīng)大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年山東財經(jīng)大學(xué)
- 【奧運會獎牌榜預(yù)測建模實證探析12000字(論文)】
- (完整版)譯林版英語詞匯表(四年級下)
評論
0/150
提交評論