版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年山東中醫(yī)藥高等??茖W校高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.已知,求證:.答案:證明略解析:因為是輪換對稱不等式,可考慮由局部證整體.,相加整理得.當且僅當時等號成立.【名師指引】綜合法證明不等式常用兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這一結(jié)論,運用時要結(jié)合題目條件,有時要適當變形.2.已知R為實數(shù)集,Q為有理數(shù)集.設函數(shù)f(x)=0,(x∈CRQ)1,(x∈Q),則()A.函數(shù)y=f(x)的圖象是兩條平行直線B.limx→∞f(x)=0或limx→∞f(x)=1C.函數(shù)f[f(x)]恒等于0D.函數(shù)f[f(x)]的導函數(shù)恒等于0答案:函數(shù)y=f(x)的圖象是兩條平行直線上的一些孤立的點,故A不正確;函數(shù)f(x)的極限只有唯一的值,左右極限不等,則該函數(shù)不存在極限,故B不正確;若x是無理數(shù),則f(x)=0,f[f(x)]=f(0)=1,故C不正確;∵f[f(x)]=1,∴函數(shù)f[f(x)]的導函數(shù)恒等于0,故D正確;故選D.3.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()
A.k1<k2<k3
B.k2<k1<k3
C.k3<k2<k1
D.k1<k3<k2
答案:B4.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既不充分也不必要條件答案:若a>2且b>2,則必有a+b>4且ab>4成立,故充分性易證若a+b>4且ab>4,如a=8,b=1,此時a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上證明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要條件,故選A5.實數(shù)變量m,n滿足m2+n2=1,則坐標(m+n,mn)表示的點的軌跡是()
A.拋物線
B.橢圓
C.雙曲線的一支
D.拋物線的一部分答案:A6.已知點A(-2,0),B(2,0),動點M滿足|MA-MB|=4,則動點M的軌跡為______.答案:動點M滿足|MA-MB|=4=|AB|,結(jié)合圖形思考判斷動點M的軌跡為直線AB(不包括線段AB內(nèi)部的點)上的兩條射線.故為直線AB(不包括線段AB內(nèi)部的點)上的兩條射線.7.右圖程序運行后輸出的結(jié)果為()
A.3456
B.4567
C.5678
D.6789
答案:A8.下表是降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸標準煤)的幾組對應數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.y=0.7x+0.35,那么表中m的值為______.
x3456y2.5m44.5答案:∵根據(jù)所給的表格可以求出.x=3+4+5+64=4.5,.y=2.5+m+4+4.54=11+m4∵這組數(shù)據(jù)的樣本中心點在線性回歸直線上,∴11+m4=0.7×4.5+0.35,∴m=3,故為:39.O、A、B、C為空間四個點,又為空間的一個基底,則()
A.O、A、B、C四點共線
B.O、A、B、C四點共面,但不共線
C.O、A、B、C四點中任意三點不共線
D.O、A、B、C四點不共面答案:D10.如圖,以1×3方格紙中的格點為起點和終點的所有向量中,有多少種大小不同的模?有多少種不同的方向?
答案:模為1的向量;模為2的向量;模為3的向量;模為2的向量;模為5的向量;模為10的向量共有6個模,進而分析方向,正方形的邊對應的向量共有四個方向,邊長為1的正方形的對角線對應的向量共四個方向;1×2的矩形的對角線對應的向量共四個方向;1×3的矩形對角線對應的向量共有四個方向共有16個方向11.極點到直線ρ(cosθ+sinθ)=3的距離是
______.答案:將原極坐標方程ρ(cosθ+sinθ)=3化為:直角坐標方程為:x+y=3,原點到該直線的距離是:d=|3|2=62.∴所求的距離是:62.故填:62.12.(幾何證明選講選做題)已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點D,延長DA交△ABC的外接圓于點F,連接FB,F(xiàn)C.
(1)求證:FB=FC;
(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=33,求AD的長.答案:(1)證明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四邊形AFBC內(nèi)接于圓,∴∠DAC=∠FBC;
…2′∵∠EAD=∠FAB=∠FCB∴∠FBC=∠FCB∴FB=FC.…5(2)∵AB是圓的直徑,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6
…10′13.平面向量與的夾角為60°,=(2,0),||=1,則|+2|()
A.
B.2
C.4
D.12答案:B14.用長為4、寬為2的矩形做側(cè)面圍成一個高為2的圓柱,此圓柱的軸截面面積為()A.8B.8πC.4πD.2π答案:∵用長為4、寬為2的矩形做側(cè)面圍成一個圓柱,且圓柱高為h=2∴底面圓周由長為4的線段圍成,可得底面圓直徑2r=4π∴此圓柱的軸截面矩形的面積為S=2r×h=8π故選:B15.用演繹法證明y=x2是增函數(shù)時的大前提是______.答案:∵證明y=x2是增函數(shù)時,依據(jù)的原理就是增函數(shù)的定義,∴用演繹法證明y=x2是增函數(shù)時的大前提是:增函數(shù)的定義故填增函數(shù)的定義16.在極坐標系中,若等邊三角形ABC(頂點A,B,C按順時針方向排列)的頂點A,B的極坐標分別為(2,π6),(2,7π6),則頂點C的極坐標為______.答案:如圖所示:由于A,B的極坐標(2,π6),(2,7π6),故極點O為線段AB的中點.故等邊三角形ABC的邊長為4,AB邊上的高(即點C到AB的距離)OC等于23.設點C的極坐標為(23,π6+π2),即(23,2π3),故為(23,2π3).17.(文)橢圓的一個焦點與短軸的兩端點構(gòu)成一個正三角形,則該橢圓的離心率為()
A.
B.
C.
D.不確定答案:C18.已知有如下兩段程序:
問:程序1運行的結(jié)果為______.程序2運行的結(jié)果為______.
答案:程序1是計數(shù)變量i=21開始,不滿足i≤20,終止循環(huán),累加變量sum=0,這個程序計算的結(jié)果:sum=0;程序2計數(shù)變量i=21,開始進入循環(huán),sum=0+21=22,其值大于20,循環(huán)終止,累加變量sum從0開始,這個程序計算的是sum=21.故為:0;21.19.已知空間三點的坐標為A(1,5,-2),B(2,4,1),C(p,3,q+2),若A,B,C三點共線,則p=______,q=______.答案:∵A(1,5,-2),B(2,4,1),C(p,3,q+2),∴AB=(1,-1,3),AC=(p-1,-2,q+4)∵A,B,C三點共線,∴AB=λAC∴(1,-1,3)=λ(p-1,-2,q+4),∴1=λ(p-1)-1=-2λ,3=λ(q+4),∴λ=12,p=3,q=2,故為:3;220.某自動化儀表公司組織結(jié)構(gòu)如圖所示,其中采購部的直接領導是()
A.副總經(jīng)理(甲)
B.副總經(jīng)理(乙)
C.總經(jīng)理
D.董事會
答案:B21.從裝有2個紅球和2個白球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()
A.至少有1個白球;都是白球
B.至少有1個白球;至少有1個紅球
C.恰有1個白球;恰有2個白球
D.至少有一個白球;都是紅球答案:C22.以直線x+3=0為準線的拋物線的標準方程是______.答案:由題意,拋物線的焦點在x軸上,焦點坐標為(3,0),∴拋物線的標準方程是y2=12x故為:y2=12x23.已知△A′B′C′是水平放置的邊長為a的正三角形△ABC的斜二測平面直觀圖,那么△A′B′C′的面積為______.答案:正三角形ABC的邊長為a,故面積為34a2,而原圖和直觀圖面積之間的關(guān)系S直觀圖S原圖=24,故直觀圖△A′B′C′的面積為6a216故為:6a216.24.已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同的交點,若f(c)=0,且0<x<c時,f(x)>0
(1)證明:1a是f(x)的一個根;(2)試比較1a與c的大?。鸢福鹤C明:(1)∵f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同的交點,f(x)=0的兩個根x1,x2滿足x1x2=ca,又f(c)=0,不妨設x1=c∴x2=1a,即1a是f(x)=0的一個根.(2)假設1a<c,又1a>0由0<x<c時,f(x)>0,得f(1a)>0,與f(1a)=0矛盾∴1a≥c又:f(x)=0的兩個根不相等∴1a≠c,只有1a>c25.若雙曲線的漸近線方程為y=±3x,它的一個焦點是(10,0),則雙曲線的方程是______.答案:因為雙曲線的漸近線方程為y=±3x,則設雙曲線的方程是x2-y29=λ,又它的一個焦點是(10,0)故λ+9λ=10∴λ=1,x2-y29=1故為:x2-y29=126.已知a,b,c是正實數(shù),且a+b+c=1,則的最小值為(
)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識。將1代入中,得,當且僅當,又,故時不等式取,選C。27.如圖,△ABC中,D,E,F(xiàn)分別是邊BC,AB,CA的中點,在以A、B、C、D、E、F為端點的有向線段中所表示的向量中,
(1)與向量FE共線的有
______.
(2)與向量DF的模相等的有
______.
(3)與向量ED相等的有
______.答案:(1)∵EF是△ABC的中位線,∴EF∥BC且EF=12BC,則與向量FE共線的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位線,∴DF∥AC且DF=12AC,則與向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位線,∴DE∥AB且DE=12AB,則與向量ED相等的有AF,F(xiàn)B.28.用0.618法確定的試點,則經(jīng)過(
)次試驗后,存優(yōu)范圍縮小為原來的0.6184倍.答案:529.已知空間四邊形OABC,M,N分別是OA,BC的中點,且OA=a,OB=b,OC=c,用a,b,c表示向量MN為()A.12a+12b+12cB.12a-12b+12cC.-12a+12b+12cD.-12a+12b-12c答案:如圖所示,連接ON,AN,則ON=12(OB+OC)=12(b+c),AN=12(AC+AB)=12(OC-2OA+OB)=12(-2a+b+c)=-a+12b+12c,所以MN=12(ON+AN)=-12a+12b+12c.故選C.30.若a=(1,1),則|a|=______.答案:由題意知,a=(1,1),則|a|=1+1=2,故為:2.31.在極坐標系中,圓ρ=-2cosθ的圓心的極坐標是()
A.(1,)
B.(1,-)
C.(1,0)
D.(1,π)答案:D32.如圖,小圓圈表示網(wǎng)絡的結(jié)點,結(jié)點之間的連線表示它們有網(wǎng)線相聯(lián),連線標注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量,現(xiàn)從結(jié)點B向結(jié)點A傳遞信息,信息可以分開沿不同的路線同時傳遞,則單位時間內(nèi)傳遞的最大信息量為()
A.26
B.24
C.20
D.19
答案:D33.在z軸上與點A(-4,1,7)和點B(3,5,-2)等距離的點C的坐標為
______.答案:由題意設C(0,0,z),∵C與點A(-4,1,7)和點B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點的坐標是(0,0,149)故為:(0,0,149)34.不等式3≤|5-2x|<9的解集為()
A.[-2,1)∪[4,7)
B.(-2,1]∪(4,7]
C.(-2,-1]∪[4,7)
D.(-2,1]∪[4,7)答案:D35.設集合A={x|x<1,x∈R},B={x|1x>1,x∈R},則下列圖形能表示A與B關(guān)系的是()A.
B.
C.
D.
答案:B={x|1x>1}={x|0<x<1},所以B?A.所以對應的關(guān)系選A.故選A.36.如圖,曲線C1、C2、C3分別是函數(shù)y=ax、y=bx、y=cx的圖象,則()
A.a(chǎn)<b<c
B.a(chǎn)<c<B
C.c<b<a
D.b<c<a
答案:C37.下列函數(shù)中,與函數(shù)y=x(x≥0)有相同圖象的一個是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一個函數(shù)與函數(shù)y=x
(x≥0)有相同圖象時,這兩個函數(shù)應是同一個函數(shù).A中的函數(shù)和函數(shù)y=x
(x≥0)的值域不同,故不是同一個函數(shù).B中的函數(shù)和函數(shù)y=x
(x≥0)具有相同的定義域、值域、對應關(guān)系,故是同一個函數(shù).C中的函數(shù)和函數(shù)y=x
(x≥0)的值域不同,故不是同一個函數(shù).D中的函數(shù)和函數(shù)y=x
(x≥0)的定義域不同,故不是同一個函數(shù).綜上,只有B中的函數(shù)和函數(shù)y=x
(x≥0)是同一個函數(shù),具有相同的圖象,故選B.38.若lga,lgb是方程2x2-4x+1=0的兩個根,則的值等于
A.2
B.
C.4
D.答案:A39.已知100件產(chǎn)品中有5件次品,從中任意取出3件產(chǎn)品,設A表示事件“3件產(chǎn)品全不是次品”,B表示事件“3件產(chǎn)品全是次品”,C表示事件“3件產(chǎn)品中至少有1件次品”,則下列結(jié)論正確的是()
A.B與C互斥
B.A與C互斥
C.任意兩個事件均互斥
D.任意兩個事件均不互斥答案:B40.如圖,圓O上一點C在直徑AB上的射影為D.AD=2,AC=25,則AB=______.答案:∵AB是直徑,∴△ABC是直角三角形,∵C在直徑AB上的射影為D,∴CD⊥AB,∴AC2=AD?AB,∴AB=AC2AD=202=10,故為:1041.已知,,且與垂直,則實數(shù)λ的值為()
A.±
B.1
C.-
D.答案:D42.已知x2a2+y2b2=1(a>b>0),則a2+b2與(x+y)2的大小關(guān)系為
______.答案:由已知x2a2+y2b2=1(a>b>0)和柯西不等式的二維形式.得a2+b2=(a2+b2)(x2a2+y2b2)≥(a?xa+b?yb)2=(x+y)2.故為a2+b2≥(x+y)2.43.某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計資料預測,今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺大型設備正在該地工作,為了保護設備,施工部門提出以下三種方案:
方案1:運走設備,此時需花費4000元;
方案2:建一保護圍墻,需花費1000元,但圍墻只能抵御一個河流發(fā)生的洪水,當兩河流同時發(fā)生洪水時,設備仍將受損,損失約56
000元;
方案3:不采取措施,此時,當兩河流都發(fā)生洪水時損失達60000元,只有一條河流發(fā)生洪水時,損失為10000元.
(1)試求方案3中損失費ξ(隨機變量)的分布列;
(2)試比較哪一種方案好.答案:(1)在方案3中,記“甲河流發(fā)生洪水”為事件A,“乙河流發(fā)生洪水”為事件B,則P(A)=0.25,P(B)=0.18,所以,有且只有一條河流發(fā)生洪水的概率為P(A?.B+.A?B)=P(A)?P(.B)+P(.A)?P(B)=0.34,兩河流同時發(fā)生洪水的概率為P(A?B)=0.045,都不發(fā)生洪水的概率為P(.A?.B)=0.75×0.82=0.615,設損失費為隨機變量ξ,則ξ的分布列為:(2)對方案1來說,花費4000元;對方案2來說,建圍墻需花費1000元,它只能抵御一條河流的洪水,但當兩河流都發(fā)生洪水時,損失約56000元,而兩河流同時發(fā)生洪水的概率為P=0.25×0.18=0.045.所以,該方案中可能的花費為:1000+56000×0.045=3520(元).對于方案來說,損失費的數(shù)學期望為:Eξ=10000×0.34+60000×0.045=6100(元),比較可知,方案2最好,方案1次之,方案3最差.44.在△ABC所在平面存在一點O使得OA+OB+OC=0,則面積S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+
OC=AO,設OB+OC=OD∴O是AD的中點,要求面積之比的兩個三角形是同底的三角形,∴面積之比等于三角形的高之比,∴比值是13,故為:13.45.已知平行四邊形的三個頂點A(-2,1),B(-1,3),C(3,4),求第四個頂點D的坐標.答案:若構(gòu)成的平行四邊形為ABCD1,即AC為一條對角線,設D1(x,y),則由AC中點也是BD1中點,可得
-2+32=x-121+42=y+32,解得
x=2y=2,∴D1(2,2).同理可得,若構(gòu)成以AB為對角線的平行四邊形ACBD2,則D2(-6,0);以BC為對角線的平行四邊形ACD3B,則D3(4,6),∴第四個頂點D的坐標為:(2,2),或(-6,0),或(4,6).46.在15個村莊中有7個村莊交通不方便,現(xiàn)從中任意選10個村莊,用X表示這10個村莊中交通不方便的村莊數(shù),則P(X=4)=______.(用數(shù)字表示)答案:由題意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故為:14042947.橢圓=1的焦點為F1,點P在橢圓上,如果線段PF1的中點M在y軸上,那么點M的縱坐標是()
A.±
B.±
C.±
D.±答案:A48.已知曲線x2a+y2b=1和直線ax+by+1=0(a,b為非零實數(shù)),在同一坐標系中,它們的圖形可能是()A.
B.
C.
D.
答案:A選項中,直線的斜率大于0,故系數(shù)a,b的符號相反,此時曲線應是雙曲線,故不對;B選項中直線的斜率小于0,故系數(shù)a,b的符號相同且都為負,此時曲線不存在,故不對;C選項中,直線斜率為正,故系數(shù)a,b的符號相反,且a正,b負,此時曲線應是焦點在x軸上的雙曲線,圖形符合結(jié)論,可選;D選項中不正確,由C選項的判斷可知D不正確.故選D49.已知點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0),則點E一定落在()A.BC邊的垂直平分線上B.BC邊的中線所在的直線上C.BC邊的高線所在的直線上D.BC邊所在的直線上答案:因為點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0)所以,根據(jù)平行四邊形法則,E一定落在這個平行四邊形的起點為A的對角線上,又平行四邊形對角線互相平分,所以E一定落在BC邊的中線所在的直線上,故選B.50.已知x、y的取值如下表:x0134y2.24.34.86.7從散點圖分析,y與x線性相關(guān),且回歸方程為y=0.95x+a,則a=______.答案:點(.x,.y)在回歸直線上,計算得.x=2,.y=4.5;代入得a=2.6;故為2.6.第2卷一.綜合題(共50題)1.5位同學報名參加兩個課外活動小組,每位同學限報其中的一個小組,則不同的報名方法共有()
A.10種
B.20種
C.25種
D.32種答案:D2.規(guī)定運算.abcd.=ad-bc,則.1i-i2.=______.答案:根據(jù)題目的新規(guī)定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故為:1.3.為了了解某地母親身高x與女兒身高Y的相關(guān)關(guān)系,隨機測得10對母女的身高如下表所示:
母親身x(cm)159160160163159154159158159157女兒身Y(cm)158159160161161155162157162156計算x與Y的相關(guān)系數(shù)r≈0.71,通過查表得r的臨界值r0.05=0.632,從而有______的把握認為x與Y之間具有線性相關(guān)關(guān)系,因而求回歸直線方程是有意義的.通過計算得到回歸直線方程為y═34.92+0.78x,因此,當母親的身高為161cm時,可以估計女兒的身高大致為______.答案:查對臨界值表,由臨界值r0.05=0.632,可得有95%的把握認為x與Y之間具有線性相關(guān)關(guān)系,回歸直線方程為y=34.92+0.78x,因此,當x=161cm時,y=34.92+0.78x=34.92+0.78×161=161cm故為:95%,161cm.4.從1,2,3,4,5,6,7這七個數(shù)字中任取兩個奇數(shù)和兩個偶數(shù),組成沒有重復數(shù)字的四位數(shù),其中奇數(shù)的個數(shù)為()
A.432
B.288
C.216
D.108答案:C5.圓x2+y2-6x+4y+12=0與圓x2+y2-14x-2y+14=0的位置關(guān)系是______.答案:∵圓x2+y2-6x+4y+12=0化成標準形式,得(x-3)2+(y+2)2=1∴圓x2+y2-6x+4y+12=0的圓心為C1(3,-2),半徑r1=1同理可得圓x2+y2-14x-2y+14=0的C2(7,1),半徑r2=6∵兩圓的圓心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得兩圓的位置關(guān)系是內(nèi)切故為:內(nèi)切6.若兩直線l1,l2的傾斜角分別為α1,α2,則下列四個命題中正確的是()
A.若α1<α2,則兩直線斜率k1<k2
B.若α1=α2,則兩直線斜率k1=k2
C.若兩直線斜率k1<k2,則α1<α2
D.若兩直線斜率k1=k2,則α1=α2答案:D7.定點F1,F(xiàn)2,且|F1F2|=8,動點P滿足|PF1|+|PF2|=8,則點P的軌跡是()A.橢圓B.圓C.直線D.線段答案:∵|PF1|+|PF2|=8,且|F1F2|=8∴|PF1|+|PF2|=|F1F2|①當點P不在直線F1F2上時,根據(jù)三角形兩邊之和大于第三邊,得|PF1|+|PF2|>|F1F2|,不符合題意;②當點P在直線F1F2上時,若點P在F1、F2兩點之外時,可得|PF1|+|PF2|>8,得到|PF1|+|PF2|>|F1F2|,不符合題意;若點P在F1、F2兩點之間(或與F1、F2重合)時,可得|PF1|+|PF2|=|F1F2|,符合題意.綜上所述,得點P在直線F1F2上且在F1、F2兩點之間或與F1、F2重合,故點P的軌跡是線段F1F2.故選:D8.如圖,在長方體OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,點P在棱AA1上,且AP=2PA1,點S在棱BB1上,且SB1=2BS,點Q、R分別是O1B1、AE的中點,求證:PQ∥RS.答案:證明:如圖,建立空間直角坐標系,則A(3,0,0),B(0,4,0),O1(0,0,2),A1(3,0,2),B1(0,4,2),E(3,4,0),∵AP=2PA1,∴AP=2PA1=23AA1,即AP=23(0,0,2)=(0,0,43),∴P(3,0,43)同理可得,Q(0,2,2),R(3,2,0),S(0,4,23),∴PQ=(-3,2,23)=RS,∴PQ∥RS,∵R?PQ,∴PQ∥RS9.如圖是2010年青年歌手大獎賽中,七位評委為甲、乙兩名選手打出的分數(shù)的莖葉圖(其中m為數(shù)字0~9中的
一個),去掉一個最高分和一個最低分后,甲、乙兩名選手得分的平均數(shù)分別為a1,a2,則一定有()A.a(chǎn)1>a2B.a(chǎn)2>a1C.a(chǎn)1=a2D.a(chǎn)1,a2的大小與m的值有關(guān)答案:由題意知去掉一個最高分和一個最低分以后,兩組數(shù)據(jù)都有五個數(shù)據(jù),代入數(shù)據(jù)可以求得甲和乙的平均分a1=1+4+5×35+80=84,a2=4×3+6+75+80=85,∴a2>a1故選B10.將直線y=x繞原點逆時針旋轉(zhuǎn)60°,所得直線的方程為()
A.y=-x
B.
C.y=-3x
D.答案:A11.某幾何體的三視圖如圖所示,則這個幾何體的體積是______.答案:由三視圖可知該幾何體為是一平放的直三棱柱,底面是邊長為2的正三角形,棱柱的側(cè)棱為3,也為高.V=Sh=34×22
×3=33故為:33.12.已知x1、x2是關(guān)于x1的方程x2-(k-2)x+k2+3k+5=0的兩個實根,那么x12+x22的最大值是[
]
A.19
B.17
C.
D.18答案:D13.已知平面內(nèi)的向量a,b,c兩兩所成的角相等,且|a|=2,|b|=3,|c|=5,則|a+b+c|的值的集合為______.答案:設平面內(nèi)的向量a,b,c兩兩所成的角為α,|a+b+c|2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,當α=0°時,|a+b+c|2=100,|a+b+c|=10,當α=120°時,|a+b+c|2=7,|a+b+c|=7.所以,|a+b+c|的值的集合為{7,10}.故為:{7,10}.14.已知實數(shù)x,y滿足2x+y+5=0,那么x2+y2的最小值為()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的點到原點的距離的最小值,轉(zhuǎn)化為坐標原點到直線2x+y+5=0的距離,d=522+1=5.故選A.15.把矩陣變?yōu)楹?,與對應的值是()
A.
B.
C.
D.答案:C16.下列命題中為真命題的是(
)
A.平行直線的傾斜角相等
B.平行直線的斜率相等
C.互相垂直的兩直線的傾斜角互補
D.互相垂直的兩直線的斜率互為相反數(shù)答案:A17.與直線2x+y+1=0的距離為的直線的方程是()
A.2x+y=0
B.2x+y-2=0
C.2x+y=0或2x+y-2=0
D.2x+y=0或2x+y+2=0答案:D18.關(guān)于直線a,b,c以及平面M,N,給出下面命題:
①若a∥M,b∥M,則a∥b
②若a∥M,b⊥M,則b⊥a
③若a∥M,b⊥M,且c⊥a,c⊥b,則c⊥M
④若a⊥M,a∥N,則M⊥N,
其中正確命題的個數(shù)為()
A.0個
B.1個
C.2個
D.3個答案:C19.已知點A(1-t,1-t,t),B(2,t,t),則A、B兩點距離的最小值為()
A.
B.
C.
D.2答案:A20.某校在檢查學生作業(yè)時,抽出每班學號尾數(shù)為4的學生作業(yè)進行檢查,這里主要運用的抽樣方法是()
A.分層抽樣
B.抽簽抽樣
C.隨機抽樣
D.系統(tǒng)抽樣答案:D21.給出命題:
①線性回歸分析就是由樣本點去尋找一條貼近這些點的直線;
②利用樣本點的散點圖可以直觀判斷兩個變量的關(guān)系是否可以用線性關(guān)系表示;
③通過回歸方程=bx+a及其回歸系數(shù)b可以估計和預測變量的取值和變化趨勢;
④線性相關(guān)關(guān)系就是兩個變量間的函數(shù)關(guān)系.其中正確的命題是(
)
A.①②
B.①④
C.①②③
D.①②③④答案:D22.已知兩曲線參數(shù)方程分別為x=5cosθy=sinθ(0≤θ<π)和x=54t2y=t(t∈R),它們的交點坐標為______.答案:曲線參數(shù)方程x=5cosθy=sinθ(0≤θ<π)的直角坐標方程為:x25+y2=1;曲線x=54t2y=t(t∈R)的普通方程為:y2=45x;解方程組:x25+y2=1y2=45x得:x=1y=255∴它們的交點坐標為(1,255).故為:(1,255).23.已知x∈{1,2,x2},則實數(shù)x=______.答案:∵x∈{1,2,x2},分情況討論可得:①x=1此時集合為{1,2,1}不合題意②x=2此時集合為{1,2,4}合題意③x=x2解得x=0或x=1當x=0時集合為{1,2,0}合題意故為0或2.24.直線L1:x-y=0與直線L2:x+y-10=0的交點坐標是()
A.(5,5)
B.(5,-5)
C.(-1,1)
D.(1,1)答案:A25.在極坐標系中,已知點P(2,),則過點P且平行于極軸的直線的方程是()
A.ρsinθ=1
B.ρsinθ=
C.ρcosθ=1
D.ρcosθ=答案:A26.如圖,在棱長為2的正方體ABCD-A1B1C1D1中,以底面正方形ABCD的中心為坐標原點O,分別以射線OB,OC,AA1的指向為x軸、y軸、z軸的正方向,建立空間直角坐標系.試寫出正方體八個頂點的坐標.答案:解設i,j,k分別是與x軸、y軸、z軸的正方向方向相同的單位坐標向量.因為底面正方形的中心為O,邊長為2,所以OB=2.由于點B在x軸的正半軸上,所以OB=2i,即點B的坐標為(2,0,0).同理可得C(0,2,0),D(-2,0,0),A(0,-2,0).又OB1=OB+BB1=2i+2k,所以OB1=(2,0,2).即點B1的坐標為(2,0,2).同理可得C1(0,2,2),D1(-2,0,2),A1(0,-2,2).27.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點,連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點共圓∴∠EFC=∠D=α∴∠DEB=α故為:α28.圓心既在直線x-y=0上,又在直線x+y-4=0上,且經(jīng)過原點的圓的方程是______.答案:∵圓心既在直線x-y=0上,又在直線x+y-4=0上,∴由x-y=0x+y-4=0,得x=2y=2.∴圓心坐標為(2,2),∵圓經(jīng)過原點,∴半徑r=22,故所求圓的方程為(x-2)2+(y-2)2=8.29.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是
______.答案:∵“a,b都是奇數(shù)”的否命題是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否命題是“a+b不是偶數(shù)”,∴命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故為:若a+b不是偶數(shù),則a,b不都是奇數(shù).30.運行如圖的程序,將自然數(shù)列0,1,2,…依次輸入作為a的值,則輸出結(jié)果x為______.
答案:當n=2時,x=5×6+0=30,當n=1時,x=30×6+1=181,當n=0時,x=181×6+2=1088,故為:108831.在我市新一輪農(nóng)村電網(wǎng)改造升級過程中,需要選一個電阻調(diào)試某村某設備的線路,但調(diào)試者手中必有阻值分別為0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七種阻值不等的定值電阻,他用分數(shù)法進行優(yōu)選試驗時,依次將電阻從小到大安排序號,如果第1個試點與第2個試點比較,第1個試點是一個好點,則第3個試點值的阻值為[
]A、1KΩ
B、1.3KΩ
C、5KΩ
D、1KΩ或5KΩ答案:C32.若復數(shù)(1+bi)?(2-i)是純虛數(shù)(i是虛數(shù)單位,b是實數(shù)),則b=()A.-2B.-12C.12D.2答案:由(1+bi)?(2-i)=2+b+(2b-1)i是純虛數(shù),則2+b=02b-1≠0,解得b=-2.故選A.33.定義xn+1yn+1=1011xnyn,n∈N*為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標原點.已知OP1=(1,0),則OP2010的坐標為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標不變,縱坐標構(gòu)成以0為首項,1為公差的等差數(shù)列∴OP2010的坐標為(1,2009)故為(1,2009)34.拋物線y2=4x上一點M與該拋物線的焦點F的距離|MF|=4,則點M的橫坐標x=______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點到焦點的距離與到準線的距離是相等的,∴|MF|=4=x+p2=4,∴x=3,故為:3.35.俊、杰兄弟倆分別在P、Q兩籃球隊效力,P隊、Q隊分別有14和15名球員,且每個隊員在各自隊中被安排首發(fā)上場的機會是均等的,則P、Q兩隊交戰(zhàn)時,俊、杰兄弟倆同為首發(fā)上場交戰(zhàn)的概率是(首發(fā)上場各隊五名隊員)(
)A.B.C.D.答案:B解析:解:P(俊首發(fā))=
P(杰首發(fā))==P(俊、杰同首發(fā))=
選B評析:考察考生等可能事件的概率與相互獨立事件的概率問題。36.已知定義在實數(shù)集上的偶函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù),那么y1=f(π3),y2=f(3x2+1)和y3=f(log214)之間的大小關(guān)系為()A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1答案:∵偶函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù)∴|x|越大,函數(shù)值就越大∵|3x2+1|≥3,|log214|=2∴|3x2+1|>|log214|>π3∴y1<y3<y2故選A37.把函數(shù)y=ex的圖像按向量=(2,3)平移,得到y(tǒng)=f(x)的圖像,則f(x)=(
)
A.ex+2+3
B.ex+2-3
C.ex-2+3
D.ex-2-3答案:C38.如圖,四邊形ABCD內(nèi)接于⊙O,AD:BC=1:2,AB=35,PD=40,則過點P的⊙O的切線長是()A.60B.402C.352D.50答案:作切線PE,由切割線定理知,PE2=PD?PC=PA?PB,所以PAPC=PAPB,又△PAD與△PBC有公共角P,∠PDA=∠PBC,所以△PAD∽△PBC.故PDPB=ADBC=12,即40PB=12所以PB=80,又AB=35,PE2=PA?PB=(PB-AB)?PB=(80-35)×80=602,PE=60.故選A.39.已知定點A(2,0),圓O的方程為x2+y2=8,動點M在圓O上,那么∠OMA的最大值是()
A.
B.
C.a(chǎn)rccos
D.a(chǎn)rccos答案:B40.極坐標方程ρcos2θ=0表示的曲線為()
A.極點
B.極軸
C.一條直線
D.兩條相交直線答案:D41.想要檢驗是否喜歡參加體育活動是不是與性別有關(guān),應該檢驗()
A.H0:男性喜歡參加體育活動
B.H0:女性不喜歡參加體育活動
C.H0:喜歡參加體育活動與性別有關(guān)
D.H0:喜歡參加體育活動與性別無關(guān)答案:D42.在圖中,M、N是圓柱體的同一條母線上且位于上、下底面上的兩點,若從M點繞圓柱體的側(cè)面到達N,沿怎么樣的路線路程最短?答案:沿圓柱體的母線MN將圓柱的側(cè)面剪開輔平,得出圓柱的側(cè)面展開圖,從M點繞圓柱體的側(cè)面到達N點,實際上是從側(cè)面展開圖的長方形的一個頂點M到達不相鄰的另一個頂點N.而兩點間以線段的長度最短.所以最短路線就是側(cè)面展開圖中長方形的一條對角線.如圖所示.43.如圖在長方形ABCD中,AB=,BC=1,E為線段DC上一動點,現(xiàn)將△AED沿AE折起,使點D在面ABC上的射影K在直線AE上,當E從D運動到C,則K所形成軌跡的長度為()
A.
B.
C.
D.答案:B44.柱坐標(2,,5)對應的點的直角坐標是
。答案:()解析:∵柱坐標(2,,5),且,2,∴對應直角坐標是()45.已知a、b是不共線的向量,AB=λa+b,AC=a+μb(λ,μ∈R),則A、B、C三點共線的充要條件是______.答案:由于AB,AC有公共點A,∴若A、B、C三點共線則AB與AC共線即存在一個實數(shù)t,使AB=tAC即λ=at1=μt消去參數(shù)t得:λμ=1反之,當λμ=1時AB=1μa+b此時存在實數(shù)1μ使AB=1μAC故AB與AC共線又由AB,AC有公共點A,∴A、B、C三點共線故A、B、C三點共線的充要條件是λμ=146.若x~B(3,13),則P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故為:49.47.不等式的解集是(
)
A.
B.
C.
D.答案:D48.已知圓C的圓心為(1,1),半徑為1.直線l的參數(shù)方程為x=2+tcosθy=2+tsinθ(t為參數(shù)),且θ∈[0,π3],點P的直角坐標為(2,2),直線l與圓C交于A,B兩點,求|PA|?|PB||PA|+|PB|的最小值.答案:圓C的普通方程是(x-1)2+(y-1)2=1,將直線l的參數(shù)方程代入并化簡得t2+2(sinθ+cosθ)t+1=0,由直線參數(shù)方程的幾何意義得|PA|+|PB|=2|sinθ+cosθ|,|PA|?|PB|=1所以|PA|?|PB||PA|+|PB|=122|sin(θ+π4)|,θ∈[0,π3],當θ=π4時,|PA|?|PB||PA|+|PB|取得最小值122×1=24,所以|PA|?|PB||PA|+|PB|的最小值是24.49.當太陽光線與水平面的傾斜角為60°時,要使一根長為2m的細桿的影子最長,則細桿與水平地面所成的角為()
A.15°
B.30°
C.45°
D.60°答案:B50.(上海卷理3文8)動點P到點F(2,0)的距離與它到直線x+2=0的距離相等,則P的軌跡方程為______.答案:由拋物線的定義知點P的軌跡是以F為焦點的拋物線,其開口方向向右,且p2=2,解得p=4,所以其方程為y2=8x.故為y2=8x第3卷一.綜合題(共50題)1.若直線x+y=m與圓x=mcosφy=msinφ(φ為參數(shù),m>0)相切,則m為
______.答案:圓x=mcosφy=msinφ的圓心為(0,0),半徑為m∵直線x+y=m與圓相切,∴d=r即|m|2=m,解得m=2故為:22.已知過點A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為()
A.0
B.-8
C.2
D.10答案:B3.(1)把二進制數(shù)化為十進制數(shù);(2)把化為二進制數(shù).答案:(1)45,(2)解析:(1)先把二進制數(shù)寫成不同位上數(shù)字與2的冪的乘積之和的形式,再按照十進制的運算規(guī)則計算出結(jié)果;(2)根據(jù)二進制數(shù)“滿二進一”的原則,可以用連續(xù)去除或所得商,然后取余數(shù).(1)(2),,,,.所以..這種算法叫做除2余法,還可以用下面的除法算式表示;把上式中各步所得的余數(shù)從下到上排列,得到【名師指引】直接插入排序和冒泡排序是兩種常用的排序方法,通過該例,我們對比可以發(fā)現(xiàn),直接插入排序比冒泡排序更有效一些,執(zhí)行的操作步驟更少一些..4.直角三角形兩直角邊邊長分別為3和4,將此三角形繞其斜邊旋轉(zhuǎn)一周,求得到的旋轉(zhuǎn)體的表面積和體積.答案:根據(jù)題意,所求旋轉(zhuǎn)體由兩個同底的圓錐拼接而成它的底面半徑等于直角三角形斜邊上的高,高分別等于兩條直角邊在斜邊的射影長∵兩直角邊邊長分別為3和4,∴斜邊長為32+42=5,由面積公式可得斜邊上的高為h=3×45=125可得所求旋轉(zhuǎn)體的底面半徑r=125因此,兩個圓錐的側(cè)面積分別為S上側(cè)面=π×125×4=48π5;S下側(cè)面=π×125×3=36π5∴旋轉(zhuǎn)體的表面積S=48π5+36π5=84π5由錐體的體積公式,可得旋轉(zhuǎn)體的體積為V=13π×(125)2×5=48π55.在平面直角坐標系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù))和直線l:x=4t+6y=-3t-2(t為參數(shù)),則直線l與圓C相交所得的弦長等于______.答案:∵在平面直角坐標系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù)),∴(x+1)2+(y-2)2=25,∴圓心為(-1,2),半徑為5,∵直線l:x=4t+6y=-3t-2(t為參數(shù)),∴3x+4y-10=0,∴圓心到直線l的距離d=|-3+8-10|5=1,∴直線l與圓C相交所得的弦長=2×52-1=46.故為46.6.已知圖所示的矩形,其長為12,寬為5.在矩形內(nèi)隨同地措施1000顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為550顆.則可以估計出陰影部分的面積約為______.答案:∵矩形的長為12,寬為5,則S矩形=60∴S陰S矩=S陰60=5501000,∴S陰=33,故:33.7.已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為32,過右焦點F且斜率為k(k>0)的直線與C相交于A、B兩點,若AF=3FB,則k=______.答案:設l為橢圓的右準線,過A、B作AA1,BB1垂直于l,A1,B1為垂足,過B作BE⊥AA1于E,則|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.8.若圖中直線l1,l2,l3的斜率分別為k1,k2,k3,則()A.k2<k1<k3B.k3<k2<k1C.k2<k3<k1D.k1<k3<k2答案:∵直線l2的傾斜角為鈍角,∴k2<0.直線l1,l3的傾斜角為銳角,且直線l1的傾斜角小于l3的傾斜角,∴0<k1<k3.故選A.9.用數(shù)學歸納法證明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)時,第一步驗證n=1時,左邊應取的項是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,當n=1時,n+3=4,而等式左邊起始為1的連續(xù)的正整數(shù)的和,故n=1時,等式左邊的項為:1+2+3+4故為:1+2+3+410.直線x=1和函數(shù)y=f(x)的圖象的公共點的個數(shù)為______.答案:由函數(shù)定義知當函數(shù)在x=1處有定義時,直線x=1和函數(shù)y=f(x)的圖象的公共點的個數(shù)為1,若函數(shù)在x=1處有無定義時,直線x=1和函數(shù)y=f(x)的圖象的公共點的個數(shù)為0故線x=1和函數(shù)y=f(x)的圖象的公共點的個數(shù)為0或1故為0或111.給出以下變量①吸煙,②性別,③宗教信仰,④國籍,其中屬于分類變量的有______.答案:①因為吸煙不是分類變量,是否吸煙才是分類變量,其他②③④屬于分類變量.故為:②③④.12.用A、B、C三類不同的元件連接成兩個系統(tǒng)N1、N2當元件A、B、C都正常工作時,系統(tǒng)N1正常工作,當元件A正常工作且元件B、C至少有一個正常工作時,系統(tǒng)N2正常工作。已知元件A、B、C正常工作的概率依次為0.80,0.90,0.90,分別求系統(tǒng)N1、N2正常工作的概率.
答案:0.792解析:解:分別記三個元件A、B、C能正常工作為事件A、B、C,由題意,這三個事件相互獨立,系統(tǒng)N1正常工作的概率為P(A·B·C)=P(A)·P(B)·P(C)=0.8′0.9′0.9=0.648系統(tǒng)N2中,記事件D為B、C至少有一個正常工作,則P(D)=1–P()="1–"P()·P()=1–(1–0.9)′(1–0.9)=0.99系統(tǒng)N2正常工作的概率為P(A·D)=P(A)·P(D)=0.8′0.99=0.792。13.已知a=(2,3),b=(1,2),(a+λb)⊥(a-b),則λ=______.答案:∵a=(2,3),b=(1,2),∴a2=(2,3)?(2,3)=4+9=13,b2=(1,2)?(1,2)=1+4=5∵(a+λb)⊥(a-b)∴(a+λb)?(a-b)=a2-λb2=13-5λ=0∴λ=135故為:13514.執(zhí)行下列程序后,輸出的i的值是()
A.5
B.6
C.10
D.11答案:D15.為了調(diào)查上海市中學生的身體狀況,在甲、乙兩所學校中各隨意抽取了
100名學生,測試引體向上,結(jié)果如下表所示:
(1)甲乙兩校被測學生引體向上的平均數(shù)分別是:甲校______個,乙校______個.
(2)若5個以下(不含5個)為不合格,則甲乙兩校的合格率分別為甲校______
乙校______
(3)若15個以上(含15個)為優(yōu)秀,則甲乙兩校中優(yōu)秀率______校較高(填“甲”或“乙”)
(4)用你所學的統(tǒng)計知識對兩所學校學生的身體狀況作一個比較.你的結(jié)論是______.答案:(1)甲校被測學生引體向上的平均數(shù)是=6×3+15×5+44×8+20×11+9×5+6×20100=8.3,乙校被測學生引體向上的平均數(shù)是=6×3+11×5+51×8+18×11+8×15+6×20100=9.19;(2)甲校的合格率=15+44+20+9+6100×100%=94%,乙校的合格率=11+51+18+8+6100×100%=94%;(3)甲校中優(yōu)秀率=9+6100×100%=15%,乙校中優(yōu)秀率=8+6100×100%=14%,所以甲校較高;(4)雖然合格率相等,但是乙校平均數(shù)更高一些,所以乙校更好一些.故為:8.3,9.19,94%,94%,乙校更好一些16.求證:答案:證明見解析解析:證:∴17.橢圓x225+y29=1的兩焦點為F1,F(xiàn)2,一直線過F1交橢圓于P、Q,則△PQF2的周長為______.答案:∵a=5,由橢圓第一定義可知△PQF2的周長=4a.∴△PQF2的周長=20.,故為20.18.設k>1,則關(guān)于x,y的方程(1-k)x2+y2=k2-1所表示的曲線是()
A.長軸在x軸上的橢圓
B.長軸在y軸上的橢圓
C.實軸在x軸上的雙曲線
D.實軸在y軸上的雙曲線答案:D19.如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,點F是AE的中點.求AB與平面BDF所成角的正弦值.答案:AB與平面BDF所成角的正弦值為.解析:以點B為原點,BA、BC、BE所在的直線分別為x,y,z軸,建立如圖所示的空間直角坐標系,則B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(xiàn)(1,0,1).∴=(0,2,1),=(1,-2,0).設平面BDF的一個法向量為n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).設AB與平面BDF所成的角為,則法向量n與的夾角為-,∴cos(-)===,即sin=,故AB與平面BDF所成角的正弦值為.20.已知函數(shù)f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取絕對值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等價于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.21.如圖所示直角梯形ABCD中,∠A=90°,PA⊥面ABCD,AD||BC,AB=BC=a,AD=2a,與底面ABCD成300角.若AE⊥PD,E為垂足,PD與底面成30°角.
(1)求證:BE⊥PD;
(2)求異面直線AE與CD所成的角的大?。鸢福簽榱擞嬎惴奖悴环猎Oa=1.(1)證明:根據(jù)題意可得:以A為原點,AB,AD,AP所在直線為坐標軸建立直角坐標系(如圖)則A(0,0,0),B(1,0,0)D(0,2,0)P(0,0,233)AB?PD=(1,0,0)?(0,2,-233)=0又AE?PD=0∴AB⊥PD,AE⊥PD所以PD⊥面BEA,BE?面BEA,∴PD⊥BE(2)∵PA⊥面ABCD,PD與底面成30°角,∴∠PDA=30°過E作EF⊥AD,垂足為F,則AE=AD?sin30°=1,∠EAF=60°AF=12,EF=32∴E(0,12,32),于是AE=(0,12,32)又C(1,1,0),D(0,2,0),CD=(-1,1,0)則COSθ=AE?CD|AE||CD|=24∴AE與CD所成角的余弦值為24.22.如圖所示,在Rt△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設AB=a,∠ABC=θ
(1)求△ABC的面積f(θ)與正方形面積g(θ);
(2)當θ變化時,求f(θ)g(θ)的最小值.答案:(1)由題得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)
設正方形的邊長為x,則BG=xsinθ,由幾何關(guān)系知:∠AGD=θ∴AG=xcosθ
由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4
令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函數(shù)y=1+14(t+t4)在(0,1]遞減∴ymin=94(當且僅當t=1即θ=π4時成立)∴當θ=π4時,f(θ)g(θ)的最小值為94.23.以下四組向量中,互相平行的是.()
(1)=(1,2,1),=(1,-2,3);
(2)=(8,4,-6),=(4,2,-3);
(3)=(0,1,-1),=(0,-3,3);
(4)=(-3,2,0),=(4,-3,3).
A.(1)(2)
B.(2)(3)
C.(2)(4)
D.(1)(3)答案:B24.設全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},則CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故選B.25.將參數(shù)方程x=2sinθy=1+2cos2θ(θ為參數(shù),θ∈R)化為普通方程,所得方程是______.答案:由x=2sinθ
①y=1+2cos2θ
②,因為θ∈R,所以-1≤sinθ≤1,則-2≤x≤2.由①兩邊平方得:x2=2sin2θ③由②得y-1=2cos2θ④③+④得:x2+y-1=2,即y=-x2+3(-2≤x≤2).故為y=-x2+3(-2≤x≤2).26.某校有學生1
200人,為了調(diào)查某種情況打算抽取一個樣本容量為50的樣本,問此樣本若采用簡單隨便機抽樣將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學生都編上號0001,0002,0003…用抽簽法做1200個形狀、大小相同的號簽,然后將這些號簽放到同一個箱子里,進行均勻攪拌,抽簽時,每次從中抽一個號簽,連續(xù)抽取50次,就得到一個容量為50的樣本.27.曲線的參數(shù)方程是(t是參數(shù),t≠0),它的普通方程是()
A.(x-1)2(y-1)=1
B.
C.
D.答案:B28.四面體ABCD中,設M是CD的中點,則化簡的結(jié)果是()
A.
B.
C.
D.答案:A29.下列圖形中不一定是平面圖形的是(
)
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B30.已知當拋物線型拱橋的頂點距水面2米時,量得水面寬8米.當水面升高1米后,水面寬度是______米.答案:由題意,建立如圖所示的坐標系,拋物線的開口向下,設拋物線的標準方程為x2=-2py(p>0)∵頂點距水面2米時,量得水面寬8米∴點(4,-2)在拋物線上,代入方程得,p=4∴x2=-8y當水面升高1米后,y=-1代入方程得:x=±22∴水面寬度是42米故為:4231.如圖,PA,PB切⊙O于
A,B兩點,AC⊥PB,且與⊙O相交于
D,若∠DBC=22°,則∠APB═______.答案:連接AB根據(jù)弦切角有∠DBC=∠DAB=22°
∠PAC=∠DBA因為垂直∠DCB=90°根據(jù)外角∠ADB=∠DBC+∠DCB=112°
∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故為:44°32.如圖,正方體ABCD-A1B1C1D1的棱長為3,點M在AB上,且AM=13AB,點P在平面ABCD上,且動點P到直線A1D1的距離與P到點M的距離相等,在平面直角坐標系xAy中,動點P的軌跡方程是______.答案:作PN⊥AD,則PN⊥面A1D1DA,作NH⊥A1D1,N,H為垂足,由三垂線定理可得PH⊥A1D1.以AD,AB,AA1為x軸,y軸,z軸,建立空間坐標系,設P(x,y,0),由題意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故為:x2=2y+8.33.“因為對數(shù)函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度房地產(chǎn)項目風險控制顧問傭金協(xié)議3篇
- 二零二五年度酒店客房服務員加班費計算聘用合同范本3篇
- 二零二五年度礦山地質(zhì)勘查服務合同匯編3篇
- 2024版雇傭車輛合同書
- 二零二五年度餐飲行業(yè)承包經(jīng)營合同范本3篇
- 二零二五年度跨境貿(mào)易擔保合同及主合同風險評估協(xié)議3篇
- 家?;訉⒆有睦斫】到逃耐苿幼饔醚芯?/a>
- 二零二五年度綠色智慧社區(qū)物業(yè)移交與建設合同3篇
- 2024淘寶年度合作伙伴內(nèi)容創(chuàng)作合同模板3篇
- 2025年度軌道交通配件采購協(xié)議3篇
- 水封式排水器的研究
- 導線三角高程計算表(表內(nèi)自帶計算公式)
- 小學數(shù)學課堂教學評價表
- 鋼管裝卸安全管理規(guī)定
- 雨季專項施工方案 雨季專項施工方案 雨季專項施工方案
- 2023-2024學年浙江省余姚市小學語文三年級期末自測試卷附參考答案和詳細解析
- 學校安全事故報告和調(diào)查處理制度(四篇)
- 石油化工管道布置設計規(guī)范
- 衛(wèi)健系統(tǒng)深入開展矛盾糾紛“大走訪、大排查、大化解”專項行動工作方案
- 阿爾茨海默病(AD)的影像學診斷
- JJF 1622-2017太陽電池校準規(guī)范:光電性能
評論
0/150
提交評論