版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年新疆體育職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.已知P為拋物線y2=4x上一點(diǎn),設(shè)P到準(zhǔn)線的距離為d1,P到點(diǎn)A(1,4)的距離為d2,則d1+d2的最小值為_(kāi)_____.答案:∵y2=4x,焦點(diǎn)坐標(biāo)為F(1,0)根據(jù)拋物線定義可知P到準(zhǔn)線的距離為d1=|PF|d1+d2=|PF|+|PA|進(jìn)而可知當(dāng)A,P,F(xiàn)三點(diǎn)共線時(shí),d1+d2的最小值=|AF|=4故為42.H:x-y+z=2為坐標(biāo)空間中一平面,L為平面H上的一直線.已知點(diǎn)P(2,1,1)為L(zhǎng)上距離原點(diǎn)O最近的點(diǎn),則______為L(zhǎng)的方向向量.答案:∵x-y+z=2為坐標(biāo)空間中一平面∴平面的一個(gè)法向量是n=(1,-1,1)設(shè)直線L的方向向量為d=(2,b,c)∵L在H上,∴d與平面H的法向量n=(1,-1,1)垂直故d?n=0?2-b+c=0∵P(2,1,1)為直線L上距離原點(diǎn)O最近的點(diǎn),∴.OP⊥L故OP?d=0?(2,1,1)?(2,b,c)=0?4+b+c=0解得b=-1,c=-3故為:(2,-1,-3)3.如圖所示,已知A、B、C三點(diǎn)不共線,O為平面ABC外的一點(diǎn),若點(diǎn)M滿足
(1)判斷三個(gè)向量是否共面;
(2)判斷點(diǎn)M是否在平面ABC內(nèi).答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三個(gè)向量的基線又有公共點(diǎn)M,∴M、A、B、C共面,即點(diǎn)M在平面ABC內(nèi),4.設(shè)全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},則CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故選B.5.點(diǎn)P(2,5)關(guān)于直線x+y=1的對(duì)稱點(diǎn)的坐標(biāo)是(
)。答案:(-4,-1)6.若直線x+y=m與圓x=mcosφy=msinφ(φ為參數(shù),m>0)相切,則m為
______.答案:圓x=mcosφy=msinφ的圓心為(0,0),半徑為m∵直線x+y=m與圓相切,∴d=r即|m|2=m,解得m=2故為:27.拋擲兩枚骰子各一次,記第一枚骰子擲出的點(diǎn)數(shù)與第二枚骰子擲出的點(diǎn)數(shù)的差為X,則“X>4”表示試驗(yàn)的結(jié)果為()
A.第一枚為5點(diǎn),第二枚為1點(diǎn)
B.第一枚大于4點(diǎn),第二枚也大于4點(diǎn)
C.第一枚為6點(diǎn),第二枚為1點(diǎn)
D.第一枚為4點(diǎn),第二枚為1點(diǎn)答案:C8.已知圓的極坐標(biāo)方程為:ρ2-42ρcos(θ-π4)+6=0.
(1)將極坐標(biāo)方程化為普通方程;
(2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0
即
ρ2-42(22ρcosθ+22ρsinθ
),即x2+y2-4x-4y+6=0.(2)圓的參數(shù)方程為x=
2
+2cosαy=
2
+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值為6,最小值等于2.9.曲線(θ為參數(shù))上的點(diǎn)到兩坐標(biāo)軸的距離之和的最大值是()
A.
B.
C.1
D.答案:D10.已知點(diǎn)A(1,0,-3)和向量AB=(-1,-2,0),則點(diǎn)B的坐標(biāo)為_(kāi)_____.答案:設(shè)B(x,y,z),根據(jù)向量的坐標(biāo)運(yùn)算,AB=(x,y,z)
-
(1,0,-3)=(x-1,y,z+3)=(-1,-2,0)∴x=0,y=-2,z=-3.故為:(0,-2,-3).11.若向量,則這兩個(gè)向量的位置關(guān)系是___________。答案:垂直12.直線y=3x+3的傾斜角的大小為_(kāi)_____.答案:∵直線y=3x+3的斜率等于3,設(shè)傾斜角等于α,則0°≤α<180°,且tanα=3,∴α=60°,故為60°.13.對(duì)于實(shí)數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為_(kāi)_____.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.14.在空間直角坐標(biāo)系中,點(diǎn)P(2,-4,6)關(guān)于y軸對(duì)稱點(diǎn)P′的坐標(biāo)為P′(-2,-4,-6)P′(-2,-4,-6).答案:∵在空間直角坐標(biāo)系中,點(diǎn)(2,-4,6)關(guān)于y軸對(duì)稱,∴其對(duì)稱點(diǎn)為:(-2,-4,-6),故為:(-2,-4,-6).15.已知隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(6,),則E(2ξ+4)=()
A.10
B.4
C.3
D.9答案:A16.盒子中有10張獎(jiǎng)券,其中3張有獎(jiǎng),甲、乙先后從中各抽取1張(不放回),記“甲中獎(jiǎng)”為A,“乙中獎(jiǎng)”為B.
(1)求P(A),P(B),P(AB),P(A|B);
(2)A與B是否相互獨(dú)立,說(shuō)明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因?yàn)镻(A)≠P(A|B),所以A與B不相互獨(dú)立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因?yàn)镻(A)≠P(A|B),所以A與B不相互獨(dú)立.17.已知P(B|A)=,P(A)=,則P(AB)=()
A.
B.
C.
D.答案:D18.已知偶函數(shù)f(x)的圖象與x軸有五個(gè)公共點(diǎn),那么方程f(x)=0的所有實(shí)根之和為_(kāi)_____.答案:∵函數(shù)y=f(x)是偶函數(shù)∴其圖象關(guān)于y軸對(duì)稱∴其圖象與x軸有五個(gè)交點(diǎn)也關(guān)于y軸對(duì)稱其中一個(gè)為0.另四個(gè)關(guān)于y軸對(duì)稱.∴方程f(x)=0的所有實(shí)根之和為0故為:0.19.設(shè)計(jì)一個(gè)計(jì)算1×3×5×7×9×11×13的算法.圖中給出了程序的一部分,則在橫線①上不能填入的數(shù)是()
A.13
B.13.5
C.14
D.14.5答案:A20.對(duì)任意實(shí)數(shù)x,y,定義運(yùn)算x*y為:x*y=ax+by+cxy,其中a,b,c為常數(shù),等式右端運(yùn)算為通常的實(shí)數(shù)加法和乘法,現(xiàn)已知1*2=3,2*3=4,并且有一個(gè)非零實(shí)數(shù)m,使得對(duì)于任意的實(shí)數(shù)都有x*m=x,則d的值為(
)
A.4
B.1
C.0
D.不確定答案:A21.梯形ABCD中,AB∥CD,AB=2CD,E、F分別是AD,BC的中點(diǎn),M、N在EF上,且EM=MN=NF,若AB=a,BC=b,則AM=______(用a,b表示).答案:連結(jié)CN并延長(zhǎng)交AB于G,因?yàn)锳B∥CD,AB=2CD,M、N在EF上,且EM=MN=NF,所以G為AB的中點(diǎn),所以AC=12a+b,又E、F分別是AD,BC的中點(diǎn),M、N在EF上,且EM=MN=NF,所以M為AC的中點(diǎn),所以AM=12AC,所以AM=14a+12b.故為:14a+12b.22.計(jì)算:x10÷x5=______.答案:根據(jù)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):x10÷x5=x5故為:x523.兩弦相交,一弦被分為12cm和18cm兩段,另一弦被分為3:8,求另一弦長(zhǎng)______.答案:設(shè)另一弦長(zhǎng)xcm;由于另一弦被分為3:8的兩段,故兩段的長(zhǎng)分別為311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故為:33cm24.數(shù)集{1,x,2x}中的元素x應(yīng)滿足的條件是______.答案:根據(jù)集合中元素的互異性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故為:x≠1且x≠12且x≠0.25.點(diǎn)P(x,y)是橢圓2x2+3y2=12上的一個(gè)動(dòng)點(diǎn),則x+2y的最大值為_(kāi)_____.答案:把橢圓2x2+3y2=12化為標(biāo)準(zhǔn)方程,得x26+y24=1,∴這個(gè)橢圓的參數(shù)方程為:x=6cosθy=2sinθ,(θ為參數(shù))∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故為:22.26.如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長(zhǎng)線上一點(diǎn),且
DF=CF=2,AF:FB:BE=4:2:1.若CE與圓相切,則CE的長(zhǎng)為.答案:設(shè)AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7227.函數(shù)f(x)=x+1x的定義域是______.答案:要使原函數(shù)有意義,則x≥0x≠0,所以x>0.所以原函數(shù)的定義域?yàn)椋?,+∞).故為(0,+∞).28.從數(shù)字1,2,3,4,5中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù),這個(gè)兩位數(shù)大于40的概率()A.15B.25C.35D.45答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件是從數(shù)字1,2,3,4,5中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù),共有A52=20種結(jié)果,滿足條件的事件可以列舉出有,41,41,43,45,54,53,52,51共有8個(gè),根據(jù)古典概型概率公式得到P=820=25,故選B.29.直線x3+y4=1與x,y軸所圍成的三角形的周長(zhǎng)等于()A.6B.12C.24D.60答案:直線x3+y4=1與兩坐標(biāo)軸交于A(3,0),B(0,4),∴AB=5,∴△AOB的周長(zhǎng)為:OA+OB+AB=3+4+5=12,故選B.30.表示隨機(jī)事件發(fā)生的可能性大小的數(shù)叫做該事件的______.答案:根據(jù)概率的定義:表示隨機(jī)事件發(fā)生的可能性大小的數(shù)叫做該事件的概率;一個(gè)隨機(jī)事件發(fā)生的可能性很大,那么P的值接近1又不等于1,故為:概率.31.已知a,b為正數(shù),求證:≥.答案:證明略解析:1:∵a>0,b>0,∴≥,≥,兩式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲證≥,即證≥,只要證
≥,只要證
≥,即證
≥,只要證a3+b3≥ab(a+b),只要證a2+b2-ab≥ab,即證(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名師指引】當(dāng)要證明的不等式形式上比較復(fù)雜時(shí),常通過(guò)分析法尋求證題思路.“分析法”與“綜合法”是數(shù)學(xué)推理中常用的思維方法,特別是這兩種方法的綜合運(yùn)用能力,對(duì)解決實(shí)際問(wèn)題有重要的作用.這兩種數(shù)學(xué)方法是高考考查的重要數(shù)學(xué)思維方法.32.已知,,且與垂直,則實(shí)數(shù)λ的值為()
A.±
B.1
C.-
D.答案:D33.在5件產(chǎn)品中,有3件一等品,2件二等品.從中任取2件.那么以710為概率的事件是()A.都不是一等品B.至少有一件二等品C.恰有一件一等品D.至少有一件一等品答案:5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,從5件產(chǎn)品中任取2件,共有C52=10種結(jié)果,∵“任取的2件產(chǎn)品都不是一等品”只有1種情況,其概率是110;“任取的2件產(chǎn)品中至少有一件二等品”有C31C21+1種情況,其概率是710;“任取的2件產(chǎn)品中恰有一件一等品”有C31C21種情況,其概率是610;“任取的2件產(chǎn)品在至少有一件一等品”有C31C21+C32種情況,其概率是910;∴以710為概率的事件是“至少有一件二等品”.故為B.34.A、B、C、D、E五種不同的商品要在貨架上排成一排,其中A、B兩種商品必須排在一起,而C、D兩種商品不能排在一起,則不同的排法共有______種.答案:先把A、B進(jìn)行排列,有A22種排法,再把A、B看成一個(gè)元素,和E進(jìn)行排列,有A22種排法,最后再把C、D插入進(jìn)去,有A23種排法,根據(jù)分步計(jì)數(shù)原理可得A22A22A23=24種排法.故為:2435.如果命題P:?∈{?},命題Q:??{?},那么下列結(jié)論不正確的是()A.“P或Q”為真B.“P且Q”為假C.“非P”為假D.“非Q”為假答案:命題P:?∈{?},命題Q:??{?},可直接看出命題Q,命題P都是正確的.故“P或Q”為真.“P且Q”為真.“非P”為假.“非Q”為假.故選B.36.若定義運(yùn)算a⊕b=b,a<ba,a≥b則函數(shù)f(x)=2x⊕(12)x的值域?yàn)開(kāi)_____(用區(qū)間表示).答案:由題意畫出f(x)=2x?(12)x的圖象(實(shí)線部分),由圖可知f(x)的值域?yàn)閇1,+∞).故為:[1,+∞).37.如圖所示,已知點(diǎn)P在正方體ABCD—A′B′C′D′的對(duì)角線
BD′上,∠PDA=60°.
(1)求DP與CC′所成角的大小;
(2)求DP與平面AA′D′D所成角的大小.答案:(1)DP與CC′所成的角為45°(2)DP與平面AA′D′D所成的角為30°解析:如圖所示,以D為原點(diǎn),DA為單位長(zhǎng)度建立空間直角坐標(biāo)系D—xyz.則=(1,0,0),=(0,0,1).連接BD,B′D′.在平面BB′D′D中,延長(zhǎng)DP交B′D′于H.設(shè)="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因?yàn)閏os〈,〉==,所以〈,〉=45°,即DP與CC′所成的角為45°.(2)平面AA′D′D的一個(gè)法向量是=(0,1,0).因?yàn)閏os〈,〉==,所以〈,〉=60°,可得DP與平面AA′D′D所成的角為30°.38.已知向量a、b的夾角為60°,且|a|=2,|b|=1,則|a+2b|=______;向量a與向量a+2b的夾角的大小為_(kāi)_____.答案:∵a?b=|a|?|b|cos60°=1,∴|a+2b|=(a+2b)2=4+4+4a?b=23,設(shè)向量a與向量a+2b的夾角的大小為θ,∵a?(a+2b)=2×23cosθ=43cosθ,a?(a+2b)=a2+2a?b=4+2=6,∴43cosθ=6,cosθ=32,∴θ=30°,故為23,30°.39.BC是Rt△ABC的斜邊,AP⊥平面ABC,PD⊥BC于點(diǎn)D,則圖中共有直角三角形的個(gè)數(shù)是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,連接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜邊,∴∠BAC為直角,∴圖中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故為:8.40.如圖,已知⊙O的直徑AB=5,C為圓周上一點(diǎn),BC=4,過(guò)點(diǎn)C作⊙O的切線l,過(guò)點(diǎn)A作l的垂線AD,垂足為D,則CD=______.
答案:如圖,連接OC,由題意DC是切線可得出OC⊥DC,再過(guò)過(guò)A作AE⊥OC于E,故有四邊形AECD是矩形,可得AE=CD又⊙O的直徑AB=5,C為圓周上一點(diǎn),BC=4,∴AC=3故S△AOC=12S△ABC=12×12×4×3=3又OC=52,故12×52×AE=3解得AE=125所以CD=125故為:125.41.極坐標(biāo)系中,若A(3,π3),B(-3,π6),則s△AOB=______(其中O是極點(diǎn)).答案:∵極坐標(biāo)系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐標(biāo)系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|
=
3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故為:94.42.甲、乙兩人進(jìn)行乒乓球比賽,比賽規(guī)則為“3局2勝”,即以先贏2局者為勝.根據(jù)經(jīng)驗(yàn),每局比賽中甲獲勝的概率為0.6,則本次比賽甲獲勝的概率是(
)
A.0.216
B.0.36
C.0.432
D.0.648答案:D43.若隨機(jī)變量X~B(n,0.6),且E(X)=3,則P(X=1)的值是()
A.2×0.44
B.2×0.45
C.3×0.44
D.3×0.64答案:C44.設(shè)復(fù)數(shù)z=lg(m2-2m-2)+(m2+3m+2)i,試求實(shí)數(shù)m的取值范圍,使得:
(1)z是純虛數(shù);
(2)z是實(shí)數(shù);
(3)z對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第二象限.答案:(1)若z=lg(m2-2m-2)+(m2+3m+2)i是純虛數(shù),則可得lg(m2-2m-2)=0m2+3m+2≠0,即m2-2m-2=1m2+3m+2≠0,解之得m=3(舍去-1);…(3分)(2)若z=lg(m2-2m-2)+(m2+3m+2)i是實(shí)數(shù),則可得m2+3m+2=0,解之得m=-1或m=-2…(6分)(3)∵z=lg(m2-2m-2)+(m2+3m+2)i對(duì)應(yīng)的點(diǎn)坐標(biāo)為(lg(m2-2m-2),m2+3m+2)∴若該對(duì)應(yīng)點(diǎn)位于復(fù)平面的第二象限,則可得lg(m2-2m-2)<0m2+3m+2>0,即0<m2-2m-2<1m2+3m+2>0,解之得-1<m<1-3或1+3<m<3.…(10分)45.若a=0.30.2,b=20.4,c=0.30.3,則a,b,c三個(gè)數(shù)的大小關(guān)系是:______(用符號(hào)“>”連接這三個(gè)字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故為:b>a>c.46.不等式log12(x2-2x-15)>log12(x+13)的解集為_(kāi)_____.答案:滿足log0.5(x2-2x-15)>log0.5(x+13),得x2-2x-15<x+13x2-2x-15>0x+13>0解得:-4<x<-3,或5<x<7,則不等式log12(x2-2x-15)>log12(x+13)的解集為(-4,-3)∪(5,7)故為:(-4,-3)∪(5,7).47.已知2,4,2x,4y四個(gè)數(shù)的平均數(shù)是5而5,7,4x,6y四個(gè)數(shù)的平均數(shù)是9,則xy的值是______.答案:因?yàn)?,4,2x,4y四個(gè)數(shù)的平均數(shù)是5,則2+4+2x+4y=4×5,又由5,7,4x,6y四個(gè)數(shù)的平均數(shù)是9,則5+7+4x+6y=4×9,x與y滿足的關(guān)系式為x+2y=72x+3y=12解得x=3y=2故為6.48.下列說(shuō)法正確的是()
A.互斥事件一定是對(duì)立事件,對(duì)立事件不一定是互斥事件
B.互斥事件不一定是對(duì)立事件,對(duì)立事件一定是互斥事件
C.事件A,B中至少有一個(gè)發(fā)生的概率一定比A,B中恰有一個(gè)發(fā)生的概率大
D.事件A,B同時(shí)發(fā)生的概率一定比A,B中恰有一個(gè)發(fā)生的概率小答案:B49.不等式x+x3≥0的解集是(
)。答案:{x|x≥0}50.如圖,從圓O外一點(diǎn)P引兩條直線分別交圓O于點(diǎn)A,B,C,D,且PA=AB,PC=5,CD=9,則AB的長(zhǎng)等于______.答案:∵PAB和PBC是圓O的兩條割線∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故為:35第2卷一.綜合題(共50題)1.(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是______.
C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長(zhǎng)線上一點(diǎn),且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長(zhǎng)為_(kāi)_____.答案:A:當(dāng)x<-3時(shí)不等式|x-5|+|x+3|≥10可化為:-(x-5)-(x+3)≥10解得:x≤-4當(dāng)-3≤x≤5時(shí)不等式|x-5|+|x+3|≥10可化為:-(x-5)+(x+3)=8≥10恒不成立當(dāng)x>5時(shí)不等式|x-5|+|x+3|≥10可化為:(x-5)+(x+3)≥10解得:x≥6故不等式|x-5|+|x+3|≥10解集為:(-∞,-4]∪[6,+∞).B:圓ρ=-2sinθ即ρ2=-2ρsinθ,即x2+y2+2y=0,即x2+(y+1)2=1.表示以(0,-1)為圓心,半徑等于1的圓,故圓心的極坐標(biāo)為(1,3π2).C:由題意,DF=CF=22,BE=1,BF=2,由DF?FC=AF?BF,得22?22=AF?2,∴AF=4,又BF=2,BE=1,∴AE=7;由切割線定理得CE2=BE?EA=1×7=7.∴CE=7.故為:(-∞,-4]∪[6,+∞);(1,3π2)(不唯一);7.2.已知兩點(diǎn)A(2,1),B(3,3),則直線AB的斜率為()
A.2
B.
C.
D.-2答案:A3.已知二元一次方程組a1x+b1y=c1a2x+b2y=c2的增廣矩陣是1-11113,則此方程組的解是______.答案:由題意,方程組
x-
y=1x+y=3解之得x=2y=1故為x=2y=14.用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個(gè)能被2整除”,那么反設(shè)的內(nèi)容是______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的步驟,應(yīng)先假設(shè)要證命題的否定成立,而要證命題的否定為:“a,b都不能被2整除”,故為:a、b都不能被2整除.5.已知z1=5+3i,z2=5+4i,下列各式中正確的是()A.z1>z2B.z1<z2C.|z1|>|z2|D.|z1|<|z2|答案:∵z1=5+3i,z2=5+4i,∴z1與z2為虛數(shù),故不能比較大小,可排除A,B;又|z1|=34,|z2|=52+42=41,∴|z1|<|z2|,可排除C.故選D.6.已知函數(shù)f(x)=(12)x
x≥4
f(x+1)
x<4
則f(2+log23)的值為_(kāi)_____.答案:∵2+log23∈(2,3),∴f(2+log23)=f(2+log23+1)=f(3+log23)=(12)3+log23=(12)3(12)log23=18×13=124故為1247.平面α外一點(diǎn)P到平面α內(nèi)的四邊形的四條邊的距離都相等,且P在α內(nèi)的射影在四邊形內(nèi)部,則四邊形是()
A.梯形
B.圓外切四邊形
C.圓內(nèi)接四邊
D.任意四邊形答案:B8.有一矩形紙片ABCD,按圖所示方法進(jìn)行任意折疊,使每次折疊后點(diǎn)B都落在邊AD上,將B的落點(diǎn)記為B′,其中EF為折痕,點(diǎn)F也可落在邊CD上,過(guò)B′作B′H∥CD交EF于點(diǎn)H,則點(diǎn)H的軌跡為()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由題意知:點(diǎn)H到定點(diǎn)B的距離以及到定直線AD的距離相等,根據(jù)拋物線的定義可知:點(diǎn)H的軌跡為:拋物線,(拋物線的一部分)故選D.9.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(u,9),若p(ξ>3)=p(ξ<1),則u=______.答案:∵隨機(jī)變量ξ服從正態(tài)分布N(u,9),p(ξ>3)=p(ξ<1),∴u=3+12=2故為210.下列在曲線上的點(diǎn)是(
)
A.
B.
C.
D.答案:B11.如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為矩形,俯視圖為直角梯形(尺寸如圖所示)
(1)求證:AE∥平面DCF;
(2)若M是AE的中點(diǎn),AB=3,∠CEF=90°,求證:平面AEF⊥平面BMC.答案:(1)證法1:過(guò)點(diǎn)E作EG⊥CF交CF于G,連結(jié)DG,可得四邊形BCGE為矩形,又四邊形ABCD為矩形,所以AD=EG,從而四邊形ADGE為平行四邊形故AE∥DG
因?yàn)锳E?平面DCF,DG?平面DCF,所以AE∥平面DCF
證法2:(面面平行的性質(zhì)法)因?yàn)樗倪呅蜝EFC為梯形,所以BE∥CF.又因?yàn)锽E?平面DCF,CF?平面DCF,所以BE∥平面DCF.因?yàn)樗倪呅蜛BCD為矩形,所以AB∥DC.同理可證AB∥平面DCF.又因?yàn)锽E和AB是平面ABE內(nèi)的兩相交直線,所以平面ABE∥平面DCF.又因?yàn)锳E?平面ABE,所以AE∥平面DCF.(2)在Rt△EFG中,∠CEF=90°,EG=3,EF=2.∴∠GEF=30°,GF=12EF=1.在RT△CEG中,∠CEG=60°,∴CG=EGtan60°=3,BE=3.∵AB=3,M是AE中點(diǎn),∴BM⊥AE,由側(cè)視圖是矩形,俯視圖是直角梯形,得BC⊥AB,BC⊥BE,∵AB∩BM=B,∴AE⊥平面BCM又∵AE?平面ACE,∴平面ACE⊥平面BCM.12.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,證明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)?(b1+b2+…+bnn).當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時(shí)等號(hào)成立.答案:證明不妨設(shè)a1≤a2≤…≤an,b1≥b2≥…≥bn.則由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.將上述n個(gè)式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式兩邊除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等號(hào)當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時(shí)成立.13.設(shè)隨機(jī)事件A、B,P(A)=35,P(B|A)=12,則P(AB)=______.答案:由條件概率的計(jì)算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故為310.14.設(shè)P,Q為△ABC內(nèi)的兩點(diǎn),且AP=mAB+nAC
(m,n>0)AQ=pAB+qAC
(p,q>0),則△ABP的面積與△ABQ的面積之比為_(kāi)_____.答案:設(shè)P到邊AB的距離為h1,Q到邊AB的距離為h2,則△ABP的面積與△ABQ的面積之比為h1h2,設(shè)AB邊上的單位法向量為e,AB?e=0,則h1=|AP?e|=|(mAB+nAC)?e|=|m?AB?e+nAC?e|=|nAC?e|,同理可得h2=|qAC?e|,∴h1h2=|nq|=nq,故為n:q.15.在極坐標(biāo)系中,點(diǎn)(2,)到圓ρ=2cosθ的圓心的距離為()
A.2
B.
C.
D.答案:D16.設(shè)0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),則m,n,p的大小關(guān)系是()A.n>m>pB.m>p>nC.m>n>pD.p>m>n答案:取a=0.5,則a2+1、a+1、2a的大小分別為:1.25,1.5,1,又因?yàn)?<a<1時(shí),y=logax為減函數(shù),所以p>m>n故選D17.與原數(shù)據(jù)單位不一樣的是()
A.眾數(shù)
B.平均數(shù)
C.標(biāo)準(zhǔn)差
D.方差答案:D18.某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:萬(wàn)元)之間有如下一組數(shù)據(jù):
x24568y3040605070若y與x之間的關(guān)系符合回歸直線方程y=6.5x+a,則a的值是()A.17.5B.27.5C.17D.14答案:由表格得.x=5,.y=50.
∵y關(guān)于x的線性回歸方程為y=6.5x+a,∴50=6.5×5+a,∴a=17.5.故選A.19.如圖所示,圓的內(nèi)接三角形ABC的角平分線BD與AC交于點(diǎn)D,與圓交于點(diǎn)E,連接AE,已知ED=3,BD=6,則線段AE的長(zhǎng)=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故為:3320.已知點(diǎn)M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點(diǎn)M的坐標(biāo)是
______.答案:∵點(diǎn)M在z軸上,∴設(shè)點(diǎn)M的坐標(biāo)為(0,0,z)又|MA|=|MB|,由空間兩點(diǎn)間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點(diǎn)M的坐標(biāo)是(0,0,-3).故為:(0,0,-3).21.已知a,b,c為正數(shù),且兩兩不等,求證:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:證明:不妨設(shè)a>b>c>0,則(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)
=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.22.如圖是為求1~1000的所有偶數(shù)的和而設(shè)計(jì)的一個(gè)程序空白框圖,將空白處補(bǔ)上.
①______.②______.答案:本程序的作用是求1~1000的所有偶數(shù)的和而設(shè)計(jì)的一個(gè)程序,由于第一次執(zhí)行循環(huán)時(shí)的循環(huán)變量S初值為0,循環(huán)變量S=S+i,計(jì)數(shù)變量i為2,步長(zhǎng)為2,故空白處:①S=S+i,②i=i+2.故為:①S=S+i,②i=i+2.23.現(xiàn)有含鹽7%的食鹽水為200g,需將它制成工業(yè)生產(chǎn)上需要的含鹽5%以上且在6%以下(不含5%和6%)的食鹽水,設(shè)需要加入4%的食鹽水xg,則x的取值范圍是(
)。答案:(100,400)24.如圖,F(xiàn)1,F(xiàn)2分別為橢圓x2a2+y2b2=1的左、右焦點(diǎn),點(diǎn)P在橢圓上,△POF2是面積為3的正三角形,則b2的值是______.答案:∵△POF2是面積為3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2為直角三角形,∴a=3+1,故為23.25.已知F是拋物線C:y2=4x的焦點(diǎn),過(guò)F且斜率為1的直線交C于A,B兩點(diǎn).設(shè)|FA|>|FB|,則|FA|與|FB|的比值等于______.答案:設(shè)A(x1,y1)B(x2,y2)由y=x-1y2=4x?x2-6x+1=0?x1=3+22,x2=3-22,(x1>x2)∴由拋物線的定義知|FA||FB|=x1+1x2+1=4+224-22=2+22-2=3+22故為:3+2226.如圖,O為直線A0A2013外一點(diǎn),若A0,A1,A2,A3,A4,A5,…,A2013中任意相鄰兩點(diǎn)的距離相等,設(shè)OA0=a,OA2013=b,用a,b表示OA0+OA1+OA2+…+OA2013,其結(jié)果為_(kāi)_____.答案:設(shè)A0A2013的中點(diǎn)為A,則A也是A1A2012,…A1006A1007的中點(diǎn),由向量的中點(diǎn)公式可得OA0+OA2013=2OA=a+b,同理可得OA1+OA2012=OA2+OA2011=…=OA1006+OA1007,故OA0+OA1+OA2+…+OA2013=1007×2OA=1007(a+b)故為:1007(a+b)27.在平面直角坐標(biāo)系xOy中,雙曲線x24-y212=1上一點(diǎn)M,點(diǎn)M的橫坐標(biāo)是3,則M到雙曲線右焦點(diǎn)的距離是______答案:MFd=e=2,d為點(diǎn)M到右準(zhǔn)線x=1的距離,則d=2,∴MF=4.故為428.若集合A={x|3≤x<7},B={x|2<x<10},則A∪B=______.答案:因?yàn)榧螦={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故為:{x|2<x<10}.29.已知圓柱與圓錐的底面積相等,高也相等,它們的體積分別為V1和V2,則V1:V2=()A.1:3B.1:1C.2:1D.3:1答案:設(shè)圓柱,圓錐的底面積為S,高為h,則由柱體,錐體的體積公式得:V1:V2=(Sh):(13Sh)=3:1故選D.30.P為△ABC內(nèi)一點(diǎn),且PA+3PB+7PC=0,則△PAC與△ABC面積的比為_(kāi)_____.答案:(如圖)分別延長(zhǎng)
PB、PC
至
B1、C1,使
PB1=3PB,PC1=7PC,則由已知可得:PA+PB1+PC1=0,故點(diǎn)P是三角形
AB1C1
的重心,設(shè)三角形
AB1C1
的面積為
3S,則S△APC1=S△APB1=S△PB1C1=S,而S△APC=17S△APC1=S7,S△ABP=13S△APB1=S3,S△PBC=13×17S△PB1C1=S21,所以△PAC與△ABC面積的比為:S7S7+S3+S21=311,故為:31131.橢圓x29+y216=1上一動(dòng)點(diǎn)P到兩焦點(diǎn)距離之和為()A.10B.8C.6D.不確定答案:根據(jù)橢圓的定義,可知?jiǎng)狱c(diǎn)P到兩焦點(diǎn)距離之和為2a=8,故選B.32.已知A(4,1,3),B(2,-5,1),C是線段AB上一點(diǎn),且,則C點(diǎn)的坐標(biāo)為()
A.
B.
C.
D.答案:C33.若直線l:ax+by=1與圓C:x2+y2=1有兩個(gè)不同交點(diǎn),則點(diǎn)P(a,b)與圓C的位置關(guān)系是(
)
A.點(diǎn)在圓上
B.點(diǎn)在圓內(nèi)
C.點(diǎn)在圓外
D.不能確定答案:C34.(x+1)4的展開(kāi)式中x2的系數(shù)為()A.4B.6C.10D.20答案:(x+1)4的展開(kāi)式的通項(xiàng)為Tr+1=C4rxr令r=2得T3=C42x2=6x∴展開(kāi)式中x2的系數(shù)為6故選項(xiàng)為B35.“因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù)(大前提),而y=(12)x是指數(shù)函數(shù)(小前提),所以函數(shù)y=(12)x是增函數(shù)(結(jié)論)”,上面推理的錯(cuò)誤在于______(大前提、小前提、結(jié)論).答案:∵當(dāng)a>1時(shí),函數(shù)是一個(gè)增函數(shù),當(dāng)0<a<1時(shí),指數(shù)函數(shù)是一個(gè)減函數(shù)∴y=ax是增函數(shù)這個(gè)大前提是錯(cuò)誤的,從而導(dǎo)致結(jié)論錯(cuò).故為:大前提.36.柱坐標(biāo)(2,,5)對(duì)應(yīng)的點(diǎn)的直角坐標(biāo)是
。答案:()解析:∵柱坐標(biāo)(2,,5),且,2,∴對(duì)應(yīng)直角坐標(biāo)是()37.下列在曲線上的點(diǎn)是()
A.
B.
C.
D.答案:D38.已知x,y的取值如下表:
x0134y2.24.34.86.7從散點(diǎn)圖分析,y與x線性相關(guān),則回歸方程為.y=bx+a必過(guò)點(diǎn)______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故樣本中心點(diǎn)的坐標(biāo)為(2,92).故為:(2,92).39.(文)函數(shù)f(x)=x+2x(x∈(0
,
2
]
)的值域是______.答案:f(x)=x+2x≥
22當(dāng)且僅當(dāng)x=2時(shí)取等號(hào)該函數(shù)在(0,2)上單調(diào)遞減,在(2,2]上單調(diào)遞增∴當(dāng)x=2時(shí)函數(shù)取最小值22,x趨近0時(shí),函數(shù)值趨近無(wú)窮大故函數(shù)f(x)=x+2x(x∈(0
,
2
]
)的值域是[22,+∞)故為:[22,+∞)40.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,c共面,則λ=______.答案:∵a、b、c三向量共面,∴c=xa+yb,x,y∈R,∴(λ,5,1)=(2x,-x,x)+(-y,4y,-2y)=(2x-y,-x+4y,x-2y),∴2x-y=λ,-x+4y=5,x-2y=1,解得x=7,y=3,λ=11;故為;
11.41.巳知橢圓{xn}與{yn}的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,離心率為32,且G上一點(diǎn)到G的兩個(gè)焦點(diǎn)的距離之和為12,則橢圓G的方程為_(kāi)_____.答案:由題設(shè)知e=32,2a=12,∴a=6,b=3,∴所求橢圓方程為x236+y29=1.:x236+y29=1.42.用行列式討論關(guān)于x,y
的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當(dāng)m≠-1,m≠1時(shí),D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當(dāng)m=-1時(shí),D=0,Dx≠0,方程組無(wú)解;…(2分)(3)當(dāng)m=1時(shí),D=Dx=Dy=0,方程組有無(wú)窮多組解,此時(shí)方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒(méi)寫出解扣1分)43.點(diǎn)(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則a的取值范圍是(
)
A.-1<a<1
B.0<a<1
C.a(chǎn)<-1或a>1
D.a(chǎn)=±1答案:A44.已知a,b,c,d都是正數(shù),S=aa+b+d+bb+c+a+cc+d+a+dd+a+c,則S的取值范圍是______.答案:∵a,b,c,d都是正數(shù),∴S=aa+b+d+bb+c+a+cc+d+a+dd+a+c>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1;S=aa+b+d+bb+c+a+cc+d+a+dd+a+c<aa+b+bb+a+cc+d+dd+c=2∴1<S<2.故為:(1,2)45.一個(gè)口袋內(nèi)有4個(gè)不同的紅球,6個(gè)不同的白球,
(1)從中任取4個(gè)球,紅球的個(gè)數(shù)不比白球少的取法有多少種?
(2)若取一個(gè)紅球記2分,取一個(gè)白球記1分,從中任取5個(gè)球,使總分不少于7分的取法有多少種?答案:解(1)由題意知本題是一個(gè)分類計(jì)數(shù)問(wèn)題,將取出4個(gè)球分成三類情況取4個(gè)紅球,沒(méi)有白球,有C44種取3個(gè)紅球1個(gè)白球,有C43C61種;取2個(gè)紅球2個(gè)白球,有C42C62,∴C44+C43C61+C42C62=115種(2)設(shè)取x個(gè)紅球,y個(gè)白球,則x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合題意的取法種數(shù)有C42C63+C43C62+C44C61=186種46.某制藥廠為了縮短培養(yǎng)時(shí)間,決定優(yōu)選培養(yǎng)溫度,試驗(yàn)范圍定為29℃至50℃,現(xiàn)用分?jǐn)?shù)法確定最佳溫度,設(shè)第1,2,3次試驗(yàn)的溫度分別為x1,x2,x3,若第2個(gè)試點(diǎn)比第1個(gè)試點(diǎn)好,則x3的值為(
)。答案:34℃或45℃47.在平行六面體ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,則x+y+z等于______.答案:根據(jù)向量的加法法則可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故為:7648.(1)已知p3+q3=2,求證p+q≤2,用反證法證明時(shí),可假設(shè)p+q≥2;
(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對(duì)值都小于1.用反證法證明時(shí)可假設(shè)方程有一根x1的絕對(duì)值大于或等于1,即假設(shè)|x1|≥1,以下結(jié)論正確的是()
A.(1)的假設(shè)錯(cuò)誤,(2)的假設(shè)正確
B.(1)與(2)的假設(shè)都正確
C.(1)的假設(shè)正確,(2)的假設(shè)錯(cuò)誤
D.(1)與(2)的假設(shè)都錯(cuò)誤答案:A49.
已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過(guò)F的直線交y軸正半軸于點(diǎn)P,交拋物線于A,B兩點(diǎn),其中點(diǎn)A在第一象限,若,,,則μ的取值范圍是()
A.[1,]
B.[,2]
C.[2,3]
D.[3,4]答案:B50.用黃金分割法尋找最佳點(diǎn),試驗(yàn)區(qū)間為[1000,2000],若第一個(gè)二個(gè)試點(diǎn)為好點(diǎn),則第三個(gè)試點(diǎn)應(yīng)選在(
)。答案:1236第3卷一.綜合題(共50題)1.
已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過(guò)F的直線交y軸正半軸于點(diǎn)P,交拋物線于A,B兩點(diǎn),其中點(diǎn)A在第一象限,若,,,則μ的取值范圍是()
A.[1,]
B.[,2]
C.[2,3]
D.[3,4]答案:B2.已知=(3,4),=(5,12),與則夾角的余弦為()
A.
B.
C.
D.答案:A3.從30個(gè)足球中抽取10個(gè)進(jìn)行質(zhì)量檢測(cè),說(shuō)明利用隨機(jī)數(shù)法抽取這個(gè)樣本的步驟及公平性.答案:第一步:首先將30個(gè)足球編號(hào):00,01,02…29,第二步:在隨機(jī)數(shù)表中隨機(jī)的選一個(gè)數(shù)作為開(kāi)始.第三步:從選定的數(shù)字向右讀,得到二位數(shù)字,將它取出,把大于29的去掉,,按照這種方法繼續(xù)向右讀,取出的二位數(shù)若與前面相同,則去掉,依次下去,就得到一個(gè)具有10個(gè)數(shù)據(jù)的樣本.其公平性在于:第一隨機(jī)數(shù)表中每一個(gè)位置上出現(xiàn)的哪一個(gè)數(shù)都是等可能的,第二從30個(gè)個(gè)體中抽到那一個(gè)個(gè)體的號(hào)碼也是機(jī)會(huì)均等的,基于以上兩點(diǎn),利用隨機(jī)數(shù)表抽取樣本保證了各個(gè)個(gè)體被抽到的機(jī)會(huì)是等可能的.4.實(shí)數(shù)系的結(jié)構(gòu)圖如圖所示,其中1、2、3三個(gè)方格中的內(nèi)容分別為()
A.有理數(shù)、零、整數(shù)
B.有理數(shù)、整數(shù)、零
C.零、有理數(shù)、整數(shù)
D.整數(shù)、有理數(shù)、零
答案:B5.已知某離散型隨機(jī)變量ξ的數(shù)學(xué)期望Eξ=76,ξ的分布列如下,則a=______.
答案:∵Eξ=76=0×a+1×13+2×16+3b∴b=16,∵P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1∴a+13+16+16=1∴a=13.故為:136.如圖所示,已知點(diǎn)P在正方體ABCD—A′B′C′D′的對(duì)角線
BD′上,∠PDA=60°.
(1)求DP與CC′所成角的大小;
(2)求DP與平面AA′D′D所成角的大小.答案:(1)DP與CC′所成的角為45°(2)DP與平面AA′D′D所成的角為30°解析:如圖所示,以D為原點(diǎn),DA為單位長(zhǎng)度建立空間直角坐標(biāo)系D—xyz.則=(1,0,0),=(0,0,1).連接BD,B′D′.在平面BB′D′D中,延長(zhǎng)DP交B′D′于H.設(shè)="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因?yàn)閏os〈,〉==,所以〈,〉=45°,即DP與CC′所成的角為45°.(2)平面AA′D′D的一個(gè)法向量是=(0,1,0).因?yàn)閏os〈,〉==,所以〈,〉=60°,可得DP與平面AA′D′D所成的角為30°.7.設(shè)x>0,y>0且x≠y,求證答案:證明略解析:由x>0,y>0且x≠y,要證明只需
即只需由條件,顯然成立.∴原不等式成立8.某幾何體的三視圖如圖所示,則這個(gè)幾何體的體積是______.答案:由三視圖可知該幾何體為是一平放的直三棱柱,底面是邊長(zhǎng)為2的正三角形,棱柱的側(cè)棱為3,也為高.V=Sh=34×22
×3=33故為:33.9.如右圖,一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一顏色,現(xiàn)有4種顏色可供選擇,求不同著色方法共有多少種?(以數(shù)字作答).答案:本題是一個(gè)分類和分步綜合的題目,根據(jù)題意可分類求第一類用三種顏色著色,由乘法原理C14C41
C12=24種方法;第二類,用四種顏色著色,由乘法原理有2C14C41
C12
C11=48種方法.從而再由加法原理得24+48=72種方法.即共有72種不同的著色方法.10.已知兩圓x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0.
(1)m取何值時(shí)兩圓外切?
(2)m取何值時(shí)兩圓內(nèi)切?
(3)當(dāng)m=45時(shí),求兩圓的公共弦所在直線的方程和公共弦的長(zhǎng).答案:(1)由已知可得兩個(gè)圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,兩圓的圓心距d=(5-1)2+(6-3)2=5,兩圓的半徑之和為11+61-m,由兩圓的半徑之和為11+61-m=5,可得m=25+1011.(2)由兩圓的圓心距d=(5-1)2+(6-3)2=5等于兩圓的半徑之差為|11-61-m|,即|11-61-m|=5,可得
11-61-m=5(舍去),或
11-61-m=-5,解得m=25-1011.(3)當(dāng)m=45時(shí),兩圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把兩個(gè)圓的方程相減,可得公共弦所在的直線方程為4x+3y-23=0.第一個(gè)圓的圓心(1,3)到公共弦所在的直線的距離為d=|4+9-23|5=2,可得弦長(zhǎng)為211-4=27.11.設(shè)集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件答案:B12.P是以F1,F(xiàn)2為焦點(diǎn)的橢圓上一點(diǎn),過(guò)焦點(diǎn)F2作∠F1PF2外角平分線的垂線,垂足為M,則點(diǎn)M的軌跡是()
A.橢圓
B.圓
C.雙曲線
D.雙曲線的一支答案:B13.若曲線C的極坐標(biāo)方程為
ρcos2θ=2sinθ,則曲線C的普通方程為_(kāi)_____.答案:曲線C的極坐標(biāo)方程為ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化為直角坐標(biāo)方程為x2=2y,故為x2=2y14.已知,求證:答案:證明略解析:∵
∴①
又∵②
③由①②③得
∴,又不等式①、②、③中等號(hào)成立的條件分別為,,故不能同時(shí)成立,從而.15.如果橢圓x225+y216=1上一點(diǎn)P到焦點(diǎn)F1的距離為6,則點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離為()A.5B.4C.8D.6答案:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故選B.16.若直線x=1的傾斜角為α,則α等于()A.0°B.45°C.90°D.不存在答案:直線x=1與x軸垂直,故直線的傾斜角是90°,故選C.17.已知直線a、b、c,其中a、b是異面直線,c∥a,b與c不相交.用反證法證明b、c是異面直線.答案:證明:假設(shè)b、c不是異面直線,則b、c共面.∵b與c不相交,∴b∥c.又∵c∥a,∴根據(jù)公理4可知b∥a.這與已知a、b是異面直線相矛盾.故b、c是異面直線.18.從集合M={1,2,3,…,10}選出5個(gè)數(shù)組成的子集,使得這5個(gè)數(shù)的任兩個(gè)數(shù)之和都不等于11,則這樣的子集有______個(gè).答案:集合{1,2,…,10}中和是11的有:1+10,2+9,3+8,4+7,5+6,選出5個(gè)不同的數(shù)組成子集,就是從這5組中分別取一個(gè)數(shù),而每組的取法有2種,所以這樣的子集有:2×2×2×2×2=32故這樣的子集有32個(gè)故為:3219.直線2x-3y+10=0的法向量的坐標(biāo)可以是答案:C20.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},則實(shí)數(shù)a的值為_(kāi)_____.答案:根據(jù)題意,集合A={0,2,a2},B={1,a},且A∪B={0,1,2,4},則有a=4,或a=4,a=4時(shí),A={0,2,16},B={1,4},A∪B={0,1,2,4,16},不合題意,舍去;a=2時(shí),A={0,2,4},B={1,2},A∪B={0,1,2,4},符合;故a=2.21.已知拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線與x軸的交點(diǎn)為M,N為拋物線上的一點(diǎn),且|NF|=32|MN|,則∠NMF=()A.π6B.π4C.π3D.5π12答案:設(shè)N到準(zhǔn)線的距離等于d,由拋物線的定義可得d=|NF|,
由題意得cos∠NMF=d|MN|=|NF||MN|=32,∴∠NMF=π6,故選A.22.在(1+2x)5的展開(kāi)式中,x2的系數(shù)等于______.(用數(shù)字作答)答案:由于(1+2x)5的展開(kāi)式的通項(xiàng)公式為Tr+1=Cr5?(2x)r,令r=2求得x2的系數(shù)等于C25×22=40,故為40.23.(理)在直角坐標(biāo)系中,圓C的參數(shù)方程是x=2cosθy=2+2sinθ(θ為參數(shù)),以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,則圓C的圓心極坐標(biāo)為_(kāi)_____.答案:∵直角坐標(biāo)系中,圓C的參數(shù)方程是x=2cosθy=2+2sinθ(θ為參數(shù)),∴x2+(y-2)2=4,∵以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,∴圓心坐標(biāo)(0,2),r=2∵0=pcosθ,∴θ=π2,又p=r=2,∴圓C的圓心極坐標(biāo)為(2,π2),故為:(2,π2).24.(坐標(biāo)系與參數(shù)方程)
從極點(diǎn)O作直線與另一直線ρcosθ=4相交于點(diǎn)M,在OM上取一點(diǎn)P,使OM?OP=12.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)R為直線ρcosθ=4上任意一點(diǎn),試求RP的最小值.答案:(1)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(ρ,θ),M的坐標(biāo)為(ρ0,θ),則ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即為所求的軌跡方程.(2)由(1)知P的軌跡是以(32,0)為圓心,半徑為32的圓,而直線l的解析式為x=4,所以圓與x軸的交點(diǎn)坐標(biāo)為(3,0),易得RP的最小值為125.已知直線的斜率為3,則此直線的傾斜角為()A.30°B.60°C.45°D.120°答案:∵直線的斜率為3,∴直線傾斜角α滿足tanα=3結(jié)合α∈[0°,180°),可得α=60°故選:B26.直線y=kx+1與圓x2+y2=4的位置關(guān)系是()
A.相交
B.相切
C.相離
D.與k的取值有關(guān)答案:A27.已知直線l的參數(shù)方程為x=3+12ty=7+32t(t為參數(shù)),曲線C的參數(shù)方程為x=4cosθy=4sinθ(θ為參數(shù)).
(I)將曲線C的參數(shù)方程轉(zhuǎn)化為普通方程;
(II)若直線l與曲線C相交于A、B兩點(diǎn),試求線段AB的長(zhǎng).答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圓的方程為x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴線段AB的長(zhǎng)為|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.28.定義:若函數(shù)f(x)對(duì)于其定義域內(nèi)的某一數(shù)x0,有f(x0)=x0,則稱x0是f(x)的一個(gè)不動(dòng)點(diǎn)。
已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0)。
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意的實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上兩個(gè)點(diǎn)A、B的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A、B的中點(diǎn)C在函數(shù)g(x)=-x+的圖象上,求b的最小值。
(參考公式:A(x1,y1),B(x2,y2)的中點(diǎn)坐標(biāo)為)
答案:解:(1)f(x)=x2-x-3,由x2-x-3=0,解得x=3或x=-1,所以所求的不動(dòng)點(diǎn)為-1或3。(2)令ax2+(b+1)x+b+1=x,則ax2+bx+b-1=0,①由題意,方程①恒由兩個(gè)不等實(shí)根,所以△=b2-4a(b-1)>0,即b2-4ab+4a>0對(duì)任意的b∈R恒成立,則△′=16a2-16a<0,故0(3)依題意,設(shè),則AB中點(diǎn)C的坐標(biāo)為,又AB的中點(diǎn)在直線上,∴,∴,又x1,x2是方程①的兩個(gè)根,∴,∴,,∴,∴當(dāng)時(shí),bmin=-1。</a<1。29.若指數(shù)函數(shù)f(x)與冪函數(shù)g(x)的圖象相交于一點(diǎn)(2,4),則f(x)=______,g(x)=______.答案:設(shè)f(x)=ax(a>0且a≠1),g(x)=xα將(2,4)代入兩個(gè)解析式得4=a2,4=2α解得a=2,α=2故為:f(x)=2x,g(x)=x230.某個(gè)命題與自然數(shù)n有關(guān),若n=k(k∈N*)時(shí)命題成立,那么可推得當(dāng)n=k+1時(shí)該命題也成立.現(xiàn)已知當(dāng)n=5時(shí),該命題不成立,那么可推得()
A.當(dāng)n=6時(shí),該命題不成立
B.當(dāng)n=6時(shí),該命題成立
C.當(dāng)n=4時(shí),該命題不成立
D.當(dāng)n=4時(shí),該命題成立答案:C31.設(shè)空間兩個(gè)不同的單位向量
a=(x1,y1,0),
b=(x2,y2,0)與向量
c=(1,1,1)的夾角都等于45°.
(1)求x1+y1和x1y1的值;
(2)求<
a,
b>的大?。鸢福海?)∵單位向量a=(x1,y1,0)與向量c=(1,1,1)的夾角等于45°∴|a|=x21+y21=1,cos45°=a?
c|a|?
|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°32.已知:如圖,四
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省南京市秦淮區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期中語(yǔ)文試卷(含答案解析)
- 中班安全教育教案18篇
- 交通運(yùn)輸企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化
- 2024至2030年中國(guó)干燥箱/培養(yǎng)箱行業(yè)投資前景及策略咨詢研究報(bào)告
- 2024至2030年中國(guó)小型前后進(jìn)平板夯行業(yè)投資前景及策略咨詢研究報(bào)告
- 樣本及抽樣分布2
- 2024年河南省中考語(yǔ)文試題含答案
- 2024年中國(guó)拷貝機(jī)市場(chǎng)調(diào)查研究報(bào)告
- 2024年中國(guó)功耗測(cè)試儀市場(chǎng)調(diào)查研究報(bào)告
- 倉(cāng)庫(kù)用電協(xié)議書范本大全
- 2024年人教部編版語(yǔ)文六年級(jí)上冊(cè)期中測(cè)試題及答案(一)
- 2024年10月福建三明寧化縣城市管理和綜合執(zhí)法局公開(kāi)招聘非在編協(xié)管員11人筆試歷年典型考點(diǎn)(頻考點(diǎn)試卷)解題思路附帶答案詳解
- 2024年環(huán)保知識(shí)生態(tài)建設(shè)知識(shí)競(jìng)賽-環(huán)?;A(chǔ)知識(shí)競(jìng)賽考試近5年真題附答案
- 2024年美容師技能競(jìng)賽考試題庫(kù)備賽500題(含答案)
- 2024中國(guó)郵政集團(tuán)河北省分公司春季校園招聘高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 人教版(2019)必修 第三冊(cè)Unit 5 The value of money 單元集體備課教案
- 第1~12課(考點(diǎn)清單)-2024-2025學(xué)年七年級(jí)歷史上學(xué)期期中考點(diǎn)大串講(統(tǒng)編版2024)
- 產(chǎn)業(yè)轉(zhuǎn)移現(xiàn)狀研究報(bào)告
- 會(huì)議培訓(xùn)合同協(xié)議書
- 配電工程施工方案高低壓配電工程施工組織設(shè)計(jì)
- 12、口腔科診療指南及技術(shù)操作規(guī)范
評(píng)論
0/150
提交評(píng)論