版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年湖南鐵路科技職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.設a=log32,b=log23,c=,則()
A.c<b<a
B.a<c<b
C.c<a<b
D.b<c<a答案:C2.如圖,橢圓C2x2a2+
y2b2=1的焦點為F1,F(xiàn)2,|A1B1|=7,S□B1A1B2A2=2S□B1F1B2F2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設n為過原點的直線,l是與n垂直相交與點P,與橢圓相交于A,B兩點的直線|op|=1,是否存在上述直線l使OA?OB=0成立?若存在,求出直線l的方程;并說出;若不存在,請說明理由.答案:(Ⅰ)由題意可知a2+b2=7,∵S□B1A1B2A2=2S□B1F1B2F2,∴a=2c.解得a2=4,b2=3,c2=1.∴橢圓C的方程為x24+y33=1.(Ⅱ)設A、B兩點的坐標分別為A(x1,y1),B(x2,y2),假設使OA?OB=0成立的直線l存在.(i)當l不垂直于x軸時,設l的方程為y=kx+m,由l與n垂直相交于P點,且|OP|=1得|m|1+
k2=1,即m2=k2+1,由OA?OB=0得x1x2+y1y2=0,將y=kx+m代入橢圓得(3+4k2)x2+8kmx+(4m2-12)=0,x1+x2=-8km3+4k2,①,x1x2=4m2-123+4k2,②0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2把①②代入上式并化簡得(1+k2)(4m2-12)-8k2m2+m2(3+4k2)=0,③將m2=1+k2代入③并化簡得-5(k2+1)=0矛盾.即此時直線l不存在.(ii)當l垂直于x軸時,滿足|OP|=1的直線l的方程為x=1或x=-1,由A、B兩點的坐標為(1,32),(1,-32)或(-1,32),(-1,-32).當x=1時,OA?OB=(1,32)?
(1,-32)=-54≠0.當x=-1時,OA?OB=(-1,32)?
(-1,-32)=-54≠0.∴此時直線l也不存在.綜上所述,使OA?OB=0成立的直線l不成立.3.已知實數(shù)x、y、z滿足x+2y+3z=1,則x2+y2+z2的最小值為______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,當且僅當x1=y2=z3,即:x2+y2+z2的最小值為114.故為:1144.已知圓的極坐標方程是ρ=2cosθ,那么該圓的直角坐標方程是()
A.(x-1)2+y2=1
B.x2+(y-1)2=1
C.(x+1)2+y2=1
D.x2+y2=2答案:A5.從甲、乙兩人手工制作的圓形產品中,各自隨機抽取6件,測得其直徑如下(單位:cm):
甲:9.00,9.20,9.00,8.50,9.10,9.20
乙:8.90,9.60,9.50,8.54,8.60,8.90
據(jù)以上數(shù)據(jù)估計兩人的技術穩(wěn)定性,結論是()
A.甲優(yōu)于乙
B.乙優(yōu)于甲
C.兩人沒區(qū)別
D.無法判斷答案:A6.(參數(shù)方程與極坐標)已知F是曲線x=2cosθy=1+cos2θ(θ∈R)的焦點,M(12,0),則|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2?(x2)2化簡得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故為:227.某商人將彩電先按原價提高40%,然后在廣告中寫上“大酬賓,八折優(yōu)惠”,結果是每臺彩電比原價多賺了270元,則每臺彩電原價是______元.答案:設每臺彩電的原價是x元,則有:(1+40%)x×0.8-x=270,解得:x=2250,故為:2250.8.已知=(1,2),=(-3,2),k+與-3垂直時,k的值為(
)
A.17
B.18
C.19
D.20答案:C9.擲一顆均勻的骰子,若隨機事件A表示“出現(xiàn)奇數(shù)點”,則A的對立事件B表示______.答案:擲一顆均勻的骰子,結果只有2種:出現(xiàn)奇數(shù)點、出現(xiàn)偶數(shù)點.若隨機事件A表示“出現(xiàn)奇數(shù)點”,則A的對立事件B表示:“出現(xiàn)偶數(shù)點”,故為出現(xiàn)偶數(shù)點.10.設a,b∈R,ab≠0,則直線ax-y+b=0和曲線bx2+ay2=ab的大致圖形是()
A.
B.
C.
D.
答案:B11.附加題(必做題)
如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.
(1)設AD=λAB,異面直線AC1與CD所成角的余弦值為925,求λ的值;
(2)若點D是AB的中點,求二面角D-CB1-B的余弦值.答案:(1)以CA,CB,CC1分別為x,y,z軸建立如圖所示空間直角坐標,因為AC=3,BC=4,AA1=4,所以A(3,0,0),B(0,4,0),C(0,0,0),C1=(0,0,4),所以AC1=(-3,0,4),因為AD=λAB,所以點D(-3λ+3,4λ,0),所以CD=(-3λ+3,4λ,0),因為異面直線AC1與CD所成角的余弦值為925,所以|cos<AC1,CD>|=|9λ-9|5(3-3λ)2+16λ2=925,解得λ=12.…(4分)(2)由(1)得B1(0,4,4),因為
D是AB的中點,所以D(32,2,0),所以CD=(32,2,0),CB1=(0,4,4),平面CBB1C1的法向量
n1=(1,0,0),設平面DB1C的一個法向量n2=(x0,y0,z0),則n1,n2的夾角(或其補角)的大小就是二面角D-CB1-B的大小,由n2?CD=0n2?CB
1=0得32x0+2y0=04y0+4z0=0令x0=4,則y0=-3,z0=3,所以n2=(4,-3,3),∴cos<n1,n2>=n1?n2|n1|?|n2|=434=23417.所以二面角D-B1C-B的余弦值為23417.
…(10分)12.若曲線C的極坐標方程為
ρcos2θ=2sinθ,則曲線C的普通方程為______.答案:曲線C的極坐標方程為ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化為直角坐標方程為x2=2y,故為x2=2y13.已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同的交點,若f(c)=0,且0<x<c時,f(x)>0
(1)證明:1a是f(x)的一個根;(2)試比較1a與c的大小.答案:證明:(1)∵f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同的交點,f(x)=0的兩個根x1,x2滿足x1x2=ca,又f(c)=0,不妨設x1=c∴x2=1a,即1a是f(x)=0的一個根.(2)假設1a<c,又1a>0由0<x<c時,f(x)>0,得f(1a)>0,與f(1a)=0矛盾∴1a≥c又:f(x)=0的兩個根不相等∴1a≠c,只有1a>c14.(坐標系與參數(shù)方程選做題)在極坐標系(ρ,θ)(ρ>0,0≤θ<π2)中,曲線ρ=2sinθ與ρ=2cosθ的交點的極坐標為______.答案:兩式ρ=2sinθ與ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交點的極坐標為(2,π4).故為:(2,π4).15.把點按向量平移到點,則的圖象按向量平移后的圖象的函數(shù)表達式為(
).A.B.C.D.答案:D解析:,由可得,所以平移后的函數(shù)解析式為16.(2的c的?湛江一模)已知⊙O的方程為x2+y2=c,則⊙O上的點到直線x=2+45ty=c-35t(t為參數(shù))的距離的最大值為______.答案:∵直線x=2+45t一=1-35t(t為參數(shù))∴3x+4一=10,∵⊙e的方程為x2+一2=1,圓心為(0,0),設直線3x+4一=k與圓相切,∴|k|5=1,∴k=±5,∴直線3x+4一=k與3x+4一=10,之間的距離就是⊙e上的點到直線的距離的最大值,∴d=|10±5|5,∴d的最大值是155=3,故為:3.17.定義xn+1yn+1=1011xnyn,n∈N*為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標原點.已知OP1=(1,0),則OP2010的坐標為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標不變,縱坐標構成以0為首項,1為公差的等差數(shù)列∴OP2010的坐標為(1,2009)故為(1,2009)18.若兩直線l1,l2的傾斜角分別為α1,α2,則下列四個命題中正確的是()
A.若α1<α2,則兩直線斜率k1<k2
B.若α1=α2,則兩直線斜率k1=k2
C.若兩直線斜率k1<k2,則α1<α2
D.若兩直線斜率k1=k2,則α1=α2答案:D19.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進行分析,抽取了總成績介于350分到650分之間的10000名學生成績,并根據(jù)這10000名學生的總成績畫了樣本的頻率分布直方圖.為了進一步分析學生的總成績與各科成績等方面的關系,要從這10000名學生中,再用分層抽樣方法抽出200人作進一步調查,則總成績在[400,500)內共抽出()
A.100人
B.90人
C.65人
D.50人
答案:B20.某校對文明班的評選設計了a,b,c,d,e五個方面的多元評價指標,并通過經驗公式樣S=ab+cd+1e來計算各班的綜合得分,S的值越高則評價效果越好,若某班在自測過程中各項指標顯示出0<c<d<e<b<a,則下階段要把其中一個指標的值增加1個單位,而使得S的值增加最多,那么該指標應為()A.aB.bC.cD.d答案:因a,b,cde都為正數(shù),故分子越大或分母越小時,S的值越大,而在分子都增加1的前提下,分母越小時,S的值增長越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1個單位會使得S的值增加最多.故選C.21.已知直線l的方程為x=2-4
ty=1+3
t,則直線l的斜率為______.答案:直線x=2-4
ty=1+3
t,所以直線的普通方程為:(y-1)=-34(x-2);所以直線的斜率為:-34;故為:-34.22.能較好地反映一組數(shù)據(jù)的離散程度的是()
A.眾數(shù)
B.平均數(shù)
C.標準差
D.極差答案:C23.已知z是純虛數(shù),z+21-i是實數(shù),則z=______.答案:令Z=bi,則z+21-i=(2+bi)(1+i)(1-i)(1+i)=(2-b)+(2+b)i2又z+21-i是實數(shù),故b=-2則Z=-2i故為:-2i24.已知棱長都相等的正三棱錐內接于一個球,某學生畫出四個過球心的平面截球與正三棱錐所得的圖形,如圖所示,則()A.以上四個圖形都是正確的B.只有(2)(4)是正確的C.只有(4)是錯誤的D.只有(1)(2)是正確的答案:(1)當平行于三棱錐一底面,過球心的截面如(1)圖所示;(2)過三棱錐的一條棱和圓心所得截面如(2)圖所示;(3)過三棱錐的一個頂點(不過棱)和球心所得截面如(3)圖所示;(4)棱長都相等的正三棱錐和球心不可能在同一個面上,所以(4)是錯誤的.故選C.25.甲、乙兩人共同投擲一枚硬幣,規(guī)定硬幣正面朝上甲得1分,否則乙得1分,先積3分者獲勝,并結束游戲.
①求在前3次投擲中甲得2分,乙得1分的概率.
②設ξ表示到游戲結束時乙的得分,求ξ的分布列以及期望.答案:(1)由題意知本題是一個古典概型試驗發(fā)生的事件是擲一枚硬幣3次,出現(xiàn)的所有可能情況共有以下8種.(正正正)、(正正反)、(正反反)、(反反反)、(正反正)、(反正正)、(反反正)、(反正反)、其中甲得(2分),乙得(1分)的情況有以下3種,(正正反)、(正反正)、(反正正)∴所求概率P=38(2)ξ的所有可能值為:0、1、2、3P(ξ=0)=12×12×12=18P(ξ=1)=C13×12×(12)2×12=316,P(ξ=2)=C24(12)2(12)212=316P(ξ=3)=12×12×12+C1312(12)212+C24(12)2(12)212=12∴ξ的分布列為:∴Eξ=1×316+2×316+3×12=331626.袋中有4只紅球3只黑球,從袋中任取4只球,取到1只紅球得1分,取到1只黑球得3分,設得分為隨機變量ξ,則P(ξ≤6)=______.答案:取出的4只球中紅球個數(shù)可能為4,3,2,1個,黑球相應個數(shù)為0,1,2,3個.其分值為ξ=4,6,8.P(ξ≤6)=P(ξ=4)+P(ξ=6)=C44C03C47+C34C13C47=1335.故為:1335.27.確定方程3x2-9+4x2-16+5x2-25=120x的解集______.答案:由題意,x2-9≥0x2-16≥0x2-25≥0x>0,∴x≥5∴x2-9≥4,x2-16≥3,x2-25≥0,∴3x2-9+4x2-16+5x2-25≥24∵3x2-9+4x2-16+5x2-25=120x∴120x≥24∵x≥5,∴120x≤24∴120x=24∴x=5故為:{5}28.設隨機事件A、B,P(A)=35,P(B|A)=12,則P(AB)=______.答案:由條件概率的計算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故為310.29.已知集合{2x,x+y}={7,4},則整數(shù)x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整數(shù),舍去故為:2,530.已知a=(1,-2,1),a+b=(3,-6,3),則b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故選A.31.用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數(shù),則方程沒有整數(shù)根”正確的假設是方程存在實數(shù)根x0為()
A.整數(shù)
B.奇數(shù)或偶數(shù)
C.正整數(shù)或負整數(shù)
D.自然數(shù)或負整數(shù)答案:A32.直線kx-y+1=3k,當k變動時,所有直線都通過定點
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C33.不等式lgxx<0的解集是______.答案:∵lgx的定義域為(0,+∞)∴x>0∵lgxx<0∴l(xiāng)gx<0=lg1即0<x<1∴不等式lgxx<0的解集是{x|0<x<1}故為:{x|0<x<1}34.如圖是某賽季甲、乙兩名籃球運動員每場比賽得分的莖葉圖,中間的數(shù)字表示得分的十位數(shù),下列對乙運動員的判斷錯誤的是()A.乙運動員得分的中位數(shù)是28B.乙運動員得分的眾數(shù)為31C.乙運動員的場均得分高于甲運動員D.乙運動員的最低得分為0分答案:根據(jù)題意,可得甲的得分數(shù)據(jù):8,14,16,13,23,26,28,30,30,39可得甲得分的平均數(shù)是22.7乙的得分數(shù)據(jù):12,15,25,24,21,31,36,31,37,44可得乙得分的平均數(shù)是27.6,31出現(xiàn)了兩次,可得乙得分的眾數(shù)是1將乙得分數(shù)據(jù)按從小到大的順序排列,位于中間的兩個數(shù)是25和31,故中位數(shù)是12(25+31)=28由以上的數(shù)據(jù),可得:乙運動員得分的中位數(shù)是28,A項是正確的;乙運動員得分的眾數(shù)為31,B項是正確的;乙運動員的場均得分高于甲運動員,C各項是正確的.而D項因為乙運動員的得分沒有0分,故D項錯誤故選:D35.已知a=(3,3,2),b=(4,-3,7),c=(0,5,1),則(a+b)?c=______.答案:由于a=(3,3,2),b=(4,-3,7),則a+b=(7,0,9)又由c=(0,5,1),則(a+b)?c=(7,0,9)?(0,5,1)=9故為936.函數(shù)y=x2x4+9(x≠0)的最大值為______,此時x的值為______.答案:y=x2x4+9=1x2+9x2≤129=16,當且僅當x2=9x2,即x=±3時取等號.故為:16,
±337.已知向量a=(-2,1),b=(-3,-1),若單位向量c滿足c⊥(a+b),則c=______.答案:設c=(x,y),∵向量a=(-2,1),b=(-3,-1),單位向量c滿足c⊥(a+b),∴c?a+c?b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是單位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故為:(0,1)或(0,-1).38.已知2a=3b=6c則有()
A.∈(2,3)
B.∈(3,4)
C.∈(4,5)
D.∈(5,6)答案:C39.一個四棱錐和一個三棱錐恰好可以拼接成一個三棱柱.這個四棱錐的底面為正方形,且底面邊長與各側棱長相等,這個三棱錐的底面邊長與各側棱長也都相等.設四棱錐、三棱錐、三棱柱的高分別為h1,h2,h,則h1:h2:h3=()
A.:1:1
B.:2:2
C.:2:
D.:2:答案:B40.中心在原點,一個焦點坐標為(0,5),短軸長為4的橢圓方程為______.答案:依題意,此橢圓方程為標準方程,且焦點在y軸上,設為y2a2+x2b2=1∵橢圓的焦點坐標為(0,5),短軸長為4,∴c=5,b=2∵a2=b2+c2,∴橢圓的長半軸長為a=4+25=29∴此橢圓的標準方程為y229+x24=1故為y229+x24=141.某個幾何體的三視圖如圖所示,則該幾何體的體積是()A.23B.3C.334D.332答案:由三視圖可知該幾何體是直三棱柱,高為1,底面三角形一邊長為2,此邊上的高為3,所以V=Sh=12×2×3×1=3故選B.42.|a|=4,|b|=5,|a+b|=8,則a與b的夾角為______.答案:設a與b的夾角為θ因為|a|=4,|b|=5,|a+b|=8,所以a2+2a?b+b2=64即16+2×4×5cosθ+25=64解得cosθ=2340所以θ=arccos2340故為arccos234043.BC是Rt△ABC的斜邊,AP⊥平面ABC,PD⊥BC于點D,則圖中共有直角三角形的個數(shù)是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,連接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜邊,∴∠BAC為直角,∴圖中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故為:8.44.若數(shù)列{an}是等差數(shù)列,對于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比上述性質,若數(shù)列{cn}是各項都為正數(shù)的等比數(shù)列,對于dn>0,則dn=______時,數(shù)列{dn}也是等比數(shù)列.答案:在類比等差數(shù)列的性質推理等比數(shù)列的性質時,我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術平均數(shù)類比推理為幾何平均數(shù)等,故我們可以由數(shù)列{cn}是等差數(shù)列,則對于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比推斷:若數(shù)列{cn}是各項均為正數(shù)的等比數(shù)列,則當dn=nC1C2C3Cn時,數(shù)列{dn}也是等比數(shù)列.故為:nC1C2C3Cn45.在極坐標系中,點(2,)到圓ρ=2cosθ的圓心的距離為()
A.2
B.
C.
D.答案:D46.是平面直角坐標系(坐標原點為O)內分別與x軸、y軸正方向相同的兩個單位向量,且則△OAB的面積等于()
A.15
B.10
C.7.5
D.5答案:D47.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC邊上任取一點M,則∠AMB≥90°的概率為______.答案:過A點做BC的垂線,垂足為M',當M點落在線段BM'(含M'點不含B點)上時∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,則∠AMB≥90°的概率p=122=14.故為:1448.直線和圓交于兩點,則的中點
坐標為(
)A.B.C.D.答案:D解析:,得,中點為49.設甲、乙兩名射手各打了10發(fā)子彈,每發(fā)子彈擊中環(huán)數(shù)如下:甲:10,7,7,10,8,9,9,10,5,10;
乙:8,7,9,10,9,8,8,9,8,9則甲、乙兩名射手的射擊技術評定情況是()
A.甲比乙好
B.乙比甲好
C.甲、乙一樣好
D.難以確定答案:B50.把一顆骰子擲兩次,觀察出現(xiàn)的點數(shù),并記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b,則點(a,b)在直線x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個古典概型,試驗發(fā)生包含的事件數(shù)是6×6=36種結果,滿足條件的事件是點(a,b)在直線x+y=5左下方即a+b<5,可以列舉出所有滿足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結果,∴點在直線的下方的概率是636=16故選A.第2卷一.綜合題(共50題)1.10件產品中有7件正品,3件次品,則在第一次抽到次品條件下,第二次抽到次品的概率______.答案:根據(jù)題意,在第一次抽到次品后,有2件次品,7件正品;則第二次抽到次品的概率為29;故為29.2.如圖,AC、BC分別是直角三角形ABC的兩條直角邊,且AC=3,BC=4,以AC為直徑作圓與斜邊AB交于D,則BD=______.答案:連CD,在Rt△ABC中,因為AC、BC的長分別為3cm、4cm,所以AB=5cm,∵AC為直徑,∴∠ADC=90°,∵∠B公共角,可得Rt△BDC∽Rt△BCA,∴BD=165,故為:1653.設拋物線y2=2px(p>0)上一點A(1,2)到點B(x0,0)的距離等于到直線x=-1的距離,則實數(shù)x0的值是______.答案:∵點A(1,2)在拋物線y2=2px(p>0)上,∴4=2p,p=2,故拋物線方程為y2=4x,準線方程為x=1.由點A(1,2)到點B(x0,0)的距離等于到直線x=-1的距離,故點B(x0,0)為拋物線y2=4x的焦點,故x0=1.故為1.4.在下列4個命題中,是真命題的序號為()
①3≥3;
②100或50是10的倍數(shù);
③有兩個角是銳角的三角形是銳角三角形;
④等腰三角形至少有兩個內角相等.
A.①
B.①②
C.①②③
D.①②④答案:D5.已知實數(shù)x,y滿足2x+y+5=0,那么x2+y2的最小值為()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的點到原點的距離的最小值,轉化為坐標原點到直線2x+y+5=0的距離,d=522+1=5.故選A.6.如圖,已知⊙O是△ABC的外接圓,AB為直徑,若PA⊥AB,PO過AC的中點M,求證:PC是⊙O的切線.答案:證明:連接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO過AC的中點M,OA=OC,∴PO平分∠AOC.∴∠AOP=∠COP.(3分)∴在△PAO與△PCO中有OA=OC,∠AOP=∠COP,PO=PO.∴△PAO≌△PCO.(6分)∴∠PCO=∠PA0=90°.即PC是⊙O的切線.(7分)7.已知拋物線C1:x2=2py(p>0)上縱坐標為p的點到其焦點的距離為3.
(Ⅰ)求拋物線C1的方程;
(Ⅱ)過點P(0,-2)的直線交拋物線C1于A,B兩點,設拋物線C1在點A,B處的切線交于點M,
(?。┣簏cM的軌跡C2的方程;
(ⅱ)若點Q為(?。┲星€C2上的動點,當直線AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在時,試判斷kPQkAQ+kPQkBQ是否為常數(shù)?若是,求出這個常數(shù);若不是,請說明理由.答案:(Ⅰ)由題意得p+p2=3,則p=2,…(3分)所以拋物線C1的方程為x2=4y.
…(5分)(Ⅱ)(?。┰O過點P(0,-2)的直線方程為y=kx-2,A(x1,y1),B(x2,y2),由y=kx-2x2=4y得x2-4kx+8=0.由△>0,得k<-2或k>2,x1+x2=4k,x1x2=8.…(7分)拋物線C1在點A,B處的切線方程分別為y-y1=x12(x-x1),y-y2=x22(x-x2),即y=x12x-x214,y=x22x-x224,由y=x12x-x214y=x22x-x224得x=x1+x22=2ky=x1x24=2.所以點M的軌跡C2的方程為y=2
(x<-22或x>22).…(10分)(ⅱ)設Q(m,2)(|m|>22),則kPQ=4m,kAQ=y1-2x1-m,kBQ=y2-2x2-m.…(11分)所以kPQkAQ+kPQkBQ=4m(1kAQ+1kBQ)=4m(x1-my1-2+x2-my2-2)…(12分)=4m[(x1-m)(y2-2)+(x2-m)(y1-2)(y1-2)(y2-2)]=4m[2kx1x2-(mk+4)(x1+x2)+8mk2x1x2-4k(x1+x2)+16]=4m[16k-(mk+4)?4k+8m8k2-4k?4k+16]=4m[8m-4mk216-8k2]=4m[4m(2-k2)8(2-k2)]=2,即kPQkAQ+kPQkBQ為常數(shù)2.
…(15分)8.已知f(x+1)=x2+2x+3,則f(2)的值為______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故為:6.9.平行投影與中心投影之間的區(qū)別是
______.答案:平行投影與中心投影之間的區(qū)別是平行投影的投影線互相平行,而中心投影的投影線交于一點,故為:平行投影的投影線互相平行,而中心投影的投影線交于一點10.設集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M與P的關系為______.答案:由x+y<0,xy>0,?x<0,y<0.∴M=P.故為M=P.11.如圖,在△ABC中,BC邊上的高所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0,若點B的坐標為(1,2),求點A和點C的坐標.答案:點A為y=0與x-2y+1=0兩直線的交點,∴點A的坐標為(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分線所在直線的方程是y=0,∴kAC=-1.∴直線AC的方程是y=-x-1.而BC與x-2y+1=0垂直,∴kBC=-2.∴直線BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴點A和點C的坐標分別為(-1,0)和(5,-6)12.使關于的不等式有解的實數(shù)的最大值是(
)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。13.給出下列四個命題,其中正確的一個是()
A.在線性回歸模型中,相關指數(shù)R2=0.80,說明預報變量對解釋變量的貢獻率是80%
B.在獨立性檢驗時,兩個變量的2×2列聯(lián)表中對角線上數(shù)據(jù)的乘積相差越大,說明這兩個變量沒有關系成立的可能性就越大
C.相關指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越差
D.隨機誤差e是衡量預報精確度的一個量,它滿足E(e)=0答案:D14.選修4-4參數(shù)方程與極坐標
在平面直角坐標系xOy中,動圓x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圓心為P(x0,y0),求2x0-y0的取值范圍.答案:將圓的方程整理得:(x-4cosθ)2+(y-3sinθ)2=1由題設得x0=4cosθy0=3sinθ(θ為參數(shù),θ∈R).所以2x0-y0=8cosθ-3sinθ=73cos(θ+φ),所以
-73≤2x0-y0≤73.15.命題:“方程x2-1=0的解是x=±1”,其使用邏輯聯(lián)結詞的情況是()A.使用了邏輯聯(lián)結詞“且”B.使用了邏輯聯(lián)結詞“或”C.使用了邏輯聯(lián)結詞“非”D.沒有使用邏輯聯(lián)結詞答案:“x=±1”可以寫成“x=1或x=-1”,故選B.16.若平面向量a與b的夾角為120°,a=(2,0),|b|=1,則|a+2b|=______.答案:∵|a+2b|=(a+2b)2=a
2+4a?b+4
b2=|a|2+4|a||b|cos<a,b>+4|b|2=22+4×2×1cos120°+4×1=2.故為:217.已知z是純虛數(shù),z+21-i是實數(shù),則z=______.答案:令Z=bi,則z+21-i=(2+bi)(1+i)(1-i)(1+i)=(2-b)+(2+b)i2又z+21-i是實數(shù),故b=-2則Z=-2i故為:-2i18.設集合A和B都是自然數(shù)集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,則在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知選C.故選C19.已知空間三點A(1,1,1)、B(-1,0,4)、C(2,-2,3),則AB與CA的夾角θ的大小是
______答案:AB=(-2,-1,3),CA=(-1,3,-2),cos<AB,CA>=(-2)×(-1)+(-1)×3+3×(-2)14?14=-714=-12,∴θ=<AB,CA>=120°.故為120°20.一部記錄影片在4個單位輪映,每一單位放映一場,則不同的輪映方法數(shù)有()A.16B.44C.A44D.43答案:本題可以看做把4個單位看成四個位置,在四個位置進行全排列,故有A44種結果,故選C.21.不等式的解集是(
)
A.
B.
C.
D.答案:D22.球的表面積與它的內接正方體的表面積之比是()A.π3B.π4C.π2D.π答案:設:正方體邊長設為:a則:球的半徑為3a2所以球的表面積S1=4?π?R2=4π34a2=3πa2而正方體表面積為:S2=6a2所以比值為:S1S2=π2故選C23.如圖,已知點P在正方體ABCD-A′B′C′D′的對角線BD′上,∠PDA=60°.
(Ⅰ)求DP與CC′所成角的大??;
(Ⅱ)求DP與平面AA′D′D所成角的大?。鸢福悍椒ㄒ唬喝鐖D,以D為原點,DA為單位長建立空間直角坐標系D-xyz.則DA=(1,0,0),CC′=(0,0,1).連接BD,B'D'.在平面BB'D'D中,延長DP交B'D'于H.設DH=(m,m,1)(m>0),由已知<DH,DA>=60°,由DA?DH=|DA||DH|cos<DA,DH>可得2m=2m2+1.解得m=22,所以DH=(22,22,1).(4分)(Ⅰ)因為cos<DH,CC′>=22×0+22×0+1×11×2=22,所以<DH,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個法向量是DC=(0,1,0).因為cos<DH,DC>=22×0+22×1+1×01×2=12,所以<DH,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)方法二:如圖,以D為原點,DA為單位長建立空間直角坐標系D-xyz.則DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).設P(x,y,z)則BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)∴x=1-λy=1-λz=λ,則DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)(Ⅰ)因為cos<DP,CC′>=2-22(2-1)=22,所以<DP,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個法向量是DC=(0,1,0).因為cos<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)24.如圖,梯形ABCD內接于⊙O,AB∥CD,AB為直徑,DO平分∠ADC,則∠DAO的度數(shù)是
______.答案:∵DO平分∠ADC,∴∠CDO=∠ODA;∵OD=OA,∴∠A=∠ADO=12∠ADC;∵AB∥CD,∴∠A+∠ADC=3∠A=180°,即∠A=∠ADO=60°.故為:60°25.①學校為了了解高一學生的情況,從每班抽2人進行座談;②一次數(shù)學競賽中,某班有10人在110分以上,40人在90~100分,12人低于90分.現(xiàn)在從中抽取12人了解有關情況;③運動會服務人員為參加400m決賽的6名同學安排跑道.就這三件事,合適的抽樣方法為()A.分層抽樣,分層抽樣,簡單隨機抽樣B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣D.系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣答案:①是從較多的一個總體中抽取樣本,且總體之間沒有差異,故用系統(tǒng)抽樣,②是從不同分數(shù)的總體中抽取樣本,總體之間的差異比較大,故用分層抽樣,③是六名運動員選跑道,用簡單隨機抽樣,故選D.26.兩平行直線x+3y-4=0與2x+6y-9=0的距離是
______.答案:由直線x+3y-4=0取一點A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:102027.螺母是由
______和
______兩個簡單幾何體構成的.答案:根據(jù)螺母的結構特征知,是由正六棱柱里面挖去的一個圓柱構成的,故為:正六棱柱,圓柱.28.直線和圓交于兩點,則的中點
坐標為(
)A.B.C.D.答案:D解析:,得,中點為29.在邊長為1的正方形ABCD中,若AB=a,BC=b,AC=c.則|a+b+2c|的值是______.答案:由題意可得|a|=|b|=1,|c|=2,a+
b=c,∴|a+b+2c|=|3c|=32,故為32.30.已知向量表示“向東航行1km”,向量表示“向南航行1km”,則向量表示()
A向東南航行km
B.向東南航行2km
C.向東北航行km
D.向東北航行2km答案:A31.某年級共有210名同學參加數(shù)學期中考試,隨機抽取10名同學成績如下:
成績(分)506173859094人數(shù)221212則總體標準差的點估計值為______(結果精確到0.01).答案:由題意知本題需要先做出這組數(shù)據(jù)的平均數(shù)50×2+61×2+73+2×85+90+2×9410=74.9,這組數(shù)據(jù)的總體方差是(2×24.92+1.92+2×13.92+15.12+2×19.12)÷10=309.76,∴總體標準差是309.76≈17.60,故為:17.60.32.圓x2+y2=1上的點到直線x=2的距離的最大值是
______.答案:根據(jù)題意,圓上點到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:333.在直角三角形ABC中,∠ACB=90°,CD、CE分別為斜邊AB上的高和中線,且∠BCD與∠ACD之比為3:1,求證CD=DE.
答案:證明:∵∠A+∠ACD=∠A+∠B=90°,∴∠ACD=∠B又∵CE是直角△ABC的斜邊AB上的中線∴CE=EB∠B=∠ECB,∠ACD=∠ECB但∵∠BCD=3∠ACD,∠ECD=2∠ACD=12∠ACB=12×90°=45°,△EDC為等腰直角三角形∴CE=DE.34.已知向量p=a|a|+2b|b|,其中a、b均為非零向量,則|p|的取值范圍是
______.答案:∵|a|a||=1,|2b|b||=2
∴p2=|p|2=1+4+4a|a|?b|b|?cos<a|a|,2b|b|>=5+4?cos<a|a|,2b|b|>∈[1,9],開方可得
|p|的取值范圍[1,3],故為[1,3].35.如圖程序運行后輸出的結果為______.答案:由題意,列出如下表格s
0
5
9
12
n
5
4
3
2當n=12時,不滿足“s<10”,則輸出n的值2故為:236.若P(A∪B)=P(A)+P(B)=1,則事件A與事件B的關系是()
A.互斥事件
B.對立事件
C.不是互斥事件
D.前者都不對答案:D37.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直兩底,求頂點D的坐標.答案:設D(x,y),則∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5?0+1015+5=-1.由以上方程組解得:x=-11,y=2.∴D(-11,2).38.利用斜二側畫法畫直觀圖時,①三角形的直觀圖還是三角形;②平行四邊形的直觀圖還是平行四邊形;③正方形的直觀圖還是正方形;④菱形的直觀圖還是菱形.其中正確的是
______.答案:由斜二側直觀圖的畫法法則可知:①三角形的直觀圖還是三角形;正確;②平行四邊形的直觀圖還是平行四邊形;正確.③正方形的直觀圖還是正方形;應該是平行四邊形;所以不正確;④菱形的直觀圖還是菱形.也是平行四邊形,所以不正確.故為:①②39.若4名學生和3名教師站在一排照相,則其中恰好有2名教師相鄰的站法有______種.(用數(shù)字作答)答案:4名學生和3名教師站在一排照相,則其中恰好有2名教師相鄰,所以第一步應先取兩個老師且綁定有C23×A22=6種方法,第二步將四名學生全排列,共有4!=24種方法,第三步將綁定的兩位老師與剩下的一位老師看作兩個元素,插入四個學生隔開的五個空中,共有A25=20種方法故總的站法有6×24×20=2880種故為288040.已知a=(1,-2,4),b=(1,0,3),c=(0,0,2).求
(1)a?(b+c);
(2)4a-b+2c.答案:解(1)∵b+c=(1,0,5),∴a?(b+c)=1×1+(-2)×0+4×5=21.(2)4a-b+2c=(4,-8,16)-(1,0,3)+(0,0,4)=(3,-8,17).41.如圖,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M為AB邊上的一個動點,求PM的最小值.答案:過C作CM⊥AB,連接PM,因為PC⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此時PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.42.擬定從甲地到乙地通話m分鐘的電話費由f(m)=1.06(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù)(例如[3]=3,[3.7]=4,[3.1]=4),則從甲地到乙地通話時間為5.5分鐘的話費為()A.3.71B.3.97C.4.24D.4.77C答案:由[m]是大于或等于m的最小整數(shù)可得[5.5]=6.所以f(5.5)=1.06×(0.50×[5.5]+1)=1.06×4=4.24.故選:C.43.已知空間向量a=(1,2,3),點A(0,1,0),若AB=-2a,則點B的坐標是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:設B=(x,y,z),因為AB=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故選D.44.已知|a=2,|b|=1,a與b的夾角為60°,求向量.a+2b與2a+b的夾角.答案:由題意得,a?b=2×1×12=1,∴(a+2b)?(2a+b)=2a2+5a?b+2b2=15,|a+2b|=a2+4a?b+4b2=23,|2a+b|=4a2+4a?b+b2=21,設a+2b與2a+b夾角為θ,則cosθ=(a+2b)?(2a+b)|a+2b||2a+b|=1523×21=5714,則θ=arccos571445.在空間直角坐標系中,已知兩點P1(-1,3,5),P2(2,4,-3),則|P1P2|=()
A.
B.3
C.
D.答案:A46.某品牌平板電腦的采購商指導價為每臺2000元,若一次采購數(shù)量達到一定量,還可享受折扣.如圖為某位采購商根據(jù)折扣情況設計的算法程序框圖,若一次采購85臺該平板電腦,則S=______元.答案:分析程序中各變量、各語句,其作用是:表示一次采購共需花費的金額,再根據(jù)流程圖所示的順序,可知:該程序的作用是計算分段函數(shù)S=200×0.8?x,x>100200×0.9?x,50<x≤100200?x,0<x≤50的值,∵x=85,∴S=200×0.9×85=15300(元),故為:15300.47.已知矩陣M=2a21,其中a∈R,若點P(1,-2)在矩陣M的變換下得到點P'(-4,0)
(1)求實數(shù)a的值;
(2)求矩陣M的特征值及其對應的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4?a=3.(2)由(1)知M=2321,則矩陣M的特征多項式為f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩陣M的特征值為-1與4.當λ=-1時,(λ-2)x-3y=0-2x+(λ-1)y=0?x+y=0∴矩陣M的屬于特征值-1的一個特征向量為1-1;當λ=4時,(λ-2)x-3y=0-2x+(λ-1)y=0?2x-3y=0∴矩陣M的屬于特征值4的一個特征向量為32.48.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(
)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。49.(本小題滿分10分)選修4-1:幾何證明選講
如圖,的角平分線的延長線交它的外接圓于點.
(Ⅰ)證明:;
(Ⅱ)若的面積,求的大小.答案:(Ⅰ)證明見解析(Ⅱ)90°解析:本題主要考查平面幾何中與圓有關的定理及性質的應用、三角形相似及性質的應用.證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.因為∠AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因為△ABE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.則sin∠BAC=1,又∠BAC為三角形內角,所以∠BAC=90°.【點評】在圓的有關問題中經常要用到弦切角定理、圓周角定理、相交弦定理等結論,解題時要注意根據(jù)已知條件進行靈活的選擇,同時三角形相似是證明一些與比例有關問題的的最好的方法.50.O是正六邊形ABCDE的中心,且OA=a,OB=b,AB=c,在以A,B,C,D,E,O為端點的向量中:
(1)與a相等的向量有
______;
(2)與b相等的向量有
______;
(3)與c相等的向量有
______.答案:如圖,在O是正六邊形ABCDE的中心,以A,B,C,D,E,O為端點的向量中(1)與a相等的向量有EF,DO,CB;(2)與b相等的向量有DC,EO,F(xiàn)A;(3)與c相等的向量有FO,OC,ED.故三個空依次應填EF,DO,CB;DC,EO,F(xiàn)A;FO,OC,ED.第3卷一.綜合題(共50題)1.某班有40名學生,其中有15人是共青團員.現(xiàn)將全班分成4個小組,第一組有學生10人,共青團員4人,從該班任選一個學生代表.在選到的學生代表是共青團員的條件下,他又是第一組學生的概率為()A.415B.514C.14D.34答案:由于所有的共青團員共有15人,而第一小組有4人是共青團員,故在選到的學生代表是共青團員的條件下,他又是第一組學生的概率為415,故選A.2.某科目考試有30道題每小題有三個選項,每題2分,另有20道題,每題有四個選項每題3分,每題只有一個答案,某人隨機去選答案,則平均能得______分.答案:由題意,30道題每小題有三個選項,每題2分,每題只有一個,某人隨機去選,則可得2×30×13=20分;20道題,每題有四個選項每題3分,每題只有一個,某人隨機去選,則可得3×20×14=15分故平均能得35分故為:35分.3.用數(shù)學歸納法證明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n.1).答案:證明:(1)當n=2時,左邊=12+13+14=1312>1,∴n=2時成立(2分)(2)假設當n=k(k≥2)時成立,即1k+1k+1+1k+2+…+1k2>1那么當n=k+1時,左邊=1k+1+1k+2+1k+3+…+1(k+1)2=1k+1k+1+1k+2+1k+3+…+1k2+2k+1(k+1)2-1k>1+1k2+1+1k2+2+…+1(k+1)2-1k>1+(2k+1)?1(k+1)2-1k>1+k2-k-1k2+2k+1>1∴n=k+1時也成立(7分)根據(jù)(1)(2)可得不等式對所有的n>1都成立(8分)4.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,則以三條邊長分別為|a|,|b|,|c|所構成的三角形的形狀是______.答案:直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,即|c|a2+b2>
1即|c|2>a2+b2三角形是鈍角三角形.故為:鈍角三角形.5.定義:若函數(shù)f(x)對于其定義域內的某一數(shù)x0,有f(x0)=x0,則稱x0是f(x)的一個不動點。
已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0)。
(1)當a=1,b=-2時,求函數(shù)f(x)的不動點;
(2)若對任意的實數(shù)b,函數(shù)f(x)恒有兩個不動點,求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上兩個點A、B的橫坐標是函數(shù)f(x)的不動點,且A、B的中點C在函數(shù)g(x)=-x+的圖象上,求b的最小值。
(參考公式:A(x1,y1),B(x2,y2)的中點坐標為)
答案:解:(1)f(x)=x2-x-3,由x2-x-3=0,解得x=3或x=-1,所以所求的不動點為-1或3。(2)令ax2+(b+1)x+b+1=x,則ax2+bx+b-1=0,①由題意,方程①恒由兩個不等實根,所以△=b2-4a(b-1)>0,即b2-4ab+4a>0對任意的b∈R恒成立,則△′=16a2-16a<0,故0(3)依題意,設,則AB中點C的坐標為,又AB的中點在直線上,∴,∴,又x1,x2是方程①的兩個根,∴,∴,,∴,∴當時,bmin=-1。</a<1。6.若P(A∪B)=P(A)+P(B)=1,則事件A與事件B的關系是()
A.互斥事件
B.對立事件
C.不是互斥事件
D.前者都不對答案:D7.在極坐標系中,極點到直線ρcosθ=2的距離為______.答案:直線ρcosθ=2即x=2,極點的直角坐標為(0,0),故極點到直線ρcosθ=2的距離為2,故為2.8.用數(shù)學歸納法證明1+2+3+…+n2=,則當n=k+1時左端應在n=k的基礎上加上()
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案:D9.下面哪個不是算法的特征()A.抽象性B.精確性C.有窮性D.唯一性答案:根據(jù)算法的概念,可知算法具有抽象性、精確性、有窮性等,同一問題,可以有不同的算法,故選D.10.教學大樓共有五層,每層均有兩個樓梯,由一層到五層的走法有()
A.10種
B.25種
C.52種
D.24種答案:D11.下列各組幾何體中是多面體的一組是(
)
A.三棱柱、四棱臺、球、圓錐
B.三棱柱、四棱臺、正方體、圓臺
C.三棱柱、四棱臺、正方體、六棱錐
D.圓錐、圓臺、球、半球答案:C12.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共線;④共線向量一定相等;⑤長度相等的向量是相等向量;⑥平行于同一個向量的兩個向量是共線向量,其中正確的命題是______.答案:∵平行向量即為共線向量其定義是方向相同或相反;相等向量的定義是模相等、方向相同;①平行向量不一定相等;故錯;②不相等的向量也可能不平行;故錯;③相等向量一定共線;正確;④共線向量不一定相等;故錯;⑤長度相等的向量方向相反時不是相等向量;故錯;⑥平行于零向量的兩個向量是不一定是共線向量,故錯.其中正確的命題是③.故為:③.13.已知A、B、C三點不共線,O是平面ABC外的任一點,下列條件中能確定點M與點A、B、C一定共面的是()A.OM=OA+OB+OCB.OM=2OA-OB-OCC.OM=OA+12OB+13OCD.OM=13OA+13OB+13OC答案:由共面向量定理OM=m?OA+n?OB+p?OC,m+n+p=1,說明M、A、B、C共面,可以判斷A、B、C都是錯誤的,則D正確.故選D.14.把下列直角坐標方程或極坐標方程進行互化:
(1)ρ(2cos?-3sin?)+1=0
(2)x2+y2-4x=0.答案:(1)將原極坐標方程ρ(2cosθ-3sinθ)+1=0展開后化為:2ρcosθ-3ρsinθ+1=0,化成直角坐標方程為:2x-3y+1=0,(2)把公式x=ρcosθ、y=ρsinθ代入曲線的直角坐標方程為x2+y2-4x=0,可得極坐標方程ρ2-4ρcosθ=0,即ρ=4cosθ.15.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB上,DE⊥EB.
(Ⅰ)求證:AC是△BDE的外接圓的切線;
(Ⅱ)若AD=23,AE=6,求EC的長.答案:證明:(Ⅰ)取BD的中點O,連接OE.∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO,∴∠CBE=∠BEO,∴BC∥OE.…(3分)∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圓的切線.
…(5分)(Ⅱ)設⊙O的半徑為r,則在△AOE中,OA2=OE2+AE2,即(r+23)2=r2+62,解得r=23,…(7分)∴OA=2OE,∴∠A=30°,∠AOE=60°.∴∠CBE=∠OBE=30°.∴在Rt△BCE中,可得EC=12BE=12×3r=12×3×23=3.
…(10分)16.探測某片森林知道,可采伐的木材有10萬立方米.設森林可采伐木材的年平均增長率為8%,則經過______年,可采伐的木材增加到40萬立方米.答案:設經過n年可采伐本材達到40萬立方米則有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即經過19年,可采伐的木材增加到40萬立方米故為1917.擲一顆均勻的骰子,若隨機事件A表示“出現(xiàn)奇數(shù)點”,則A的對立事件B表示______.答案:擲一顆均勻的骰子,結果只有2種:出現(xiàn)奇數(shù)點、出現(xiàn)偶數(shù)點.若隨機事件A表示“出現(xiàn)奇數(shù)點”,則A的對立事件B表示:“出現(xiàn)偶數(shù)點”,故為出現(xiàn)偶數(shù)點.18.一組數(shù)據(jù)12,15,24,25,31,31,36,36,37,39,44,49,50的中位數(shù)是()
A.31
B.36
C.35
D.34答案:B19.化簡的結果是()
A.aB.C.a2D.答案:B解析:分析:指數(shù)函數(shù)的性質20.已知橢圓C的中心在原點,焦點F1,F(xiàn)2在軸上,離心率e=22,且經過點M(0,2),求橢圓c的方程答案:若焦點在x軸很明顯,過點M(0,2)點M即橢圓的上端點,所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4橢圓:x24+y22=1若焦點在y軸,則a=2,ca=22,c=1∴b=1橢圓方程:x22+y2=1.21.函數(shù)f(x)=2|log2x|的圖象大致是()
A.
B.
C.
D.
答案:C22.已知實數(shù)x,y滿足3x+4y+10=0,那么x2+y2的最小值為______.答案:設P(x,y),則|OP|=x2+y2,即x2+y2的幾何意義表示為直線3x+4y+10=0上的點P到原點的距離的最小值.則根據(jù)點到直線的距離公式得點P到直線3x+4y+10=0的距離d=|10|32+42=105=2.故為:2.23.若a>0,b<0,直線y=ax+b的圖象可能是()
A.
B.
C.
D.
答案:C24.某公司的管理機構設置是:設總經理一個,副總經理兩個,直接對總經理負責,下設有6個部門,其中副總經理A管理生產部、安全部和質量部,副總經理B管理銷售部、財務部和保衛(wèi)部.請根據(jù)以上信息補充該公司的人事結構圖,其中①、②處應分別填()
A.保衛(wèi)部,安全部
B.安全部,保衛(wèi)部
C.質檢中心,保衛(wèi)部
D.安全部,質檢中心
答案:B25.對變量x、y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點圖1;對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點圖2.由這兩個散點圖可以判斷()
A.變量x與y正相關,u與v正相關
B.變量x與y正相關,u與v負相關
C.變量x與y負相關,u與v正相關
D.變量x與y負相關,u與v負相關答案:C26.在極坐標系中圓ρ=2cosθ的垂直于極軸的兩條切線方程分別為()
A.θ=0(ρ∈R)和ρcosθ=2
B.θ=(ρ∈R)和ρcosθ=2
C.θ=(ρ∈R)和ρcosθ=1
D.θ=0(ρ∈R)和ρcosθ=1答案:B27.設a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c28.已知拋物線方程為y2=2px(p>0),過該拋物線焦點F且不與x軸垂直的直線AB交拋物線于A,B兩點,過點A,點B分別作AM,BN垂直于拋物線的準線,分別交準線于M,N兩點,那么∠MFN必是()
A.銳角
B.直角
C.鈍角
D.以上皆有可能答案:B29.集合{x∈N*|
12
x
∈Z}中含有的元素個數(shù)為()
A.4
B.6
C.8
D.12答案:B30.已知過點A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為()
A.0
B.-8
C.2
D.10答案:B31.方程y=ax+b和a2x2+y2=b2(a>b>1)在同一坐標系中的圖形可能是()A.
B.
C.
D.
答案:∵a>b>1,∴方程y=ax+b的圖象與y軸交于y軸的正半軸,且函數(shù)是增函數(shù),由此排除選項B和D,∵a>b>1,a2x2+y2=b2?x2(ba)2+y2b2=1,∴橢圓焦點在y軸,由此排除A.故選C.32.
若向量
=(3,2),=(0,-1),=(-1,2),則向量2-的坐標坐標是(
)
A.(3,-4)
B.(-3,4)
C.(3,4)
D.(-3,-4)答案:D33.點M(4,)化成直角坐標為()
A.(2,)
B.(-2,-)
C.(,2)
D.(-,-2)答案:B34.設集合A和B都是自然數(shù)集合N,映
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年戊二酮苯項目合作計劃書
- 2024年射頻同軸電纜組件項目建議書
- ?一年級小學生讀書筆記(十篇)
- Tetradecane-Standard-生命科學試劑-MCE
- Sulcardine-hydrochloride-生命科學試劑-MCE
- 2024-2025學年新教材高中化學第三章晶體結構與性質3.1金屬晶體教案新人教版選擇性必修2
- 2024-2025學年新教材高中數(shù)學第3章函數(shù)的概念與性質3.2.1單調性與最大小值鞏固練習含解析新人教A版必修第一冊
- 2024年高考化學二輪復習題型解讀五物質結構與性質解題指導含解析
- 統(tǒng)考版2025屆高考英語一輪復習必修3Unit9Wheels課時提能練含解析北師大版
- 2024-2025學年高中政治第一單元生活與消費第二課第一框影響價格的因素課時分層作業(yè)含解析新人教版必修1
- 新型腳手架材料研究
- 藥物警戒質量管理規(guī)范試題
- 工程量自動計算結果表格(新增文字注釋上標功能)
- 幼兒園保教工作管理
- 產后乳房腫脹的護理課件
- 基本不等式說課-高一上學期數(shù)學人教A版(2019)必修第一冊
- 物理學(高職)全套教學課件
- Unit 8 Section B(2a-2e)Thanksgiving in North America教學設計2022-2023學年人教版八年級英語上冊
- 人工智能在軟件測試中的應用
- Unit2-social-media-detox課件-高一英語外研版(2019)選擇性必修二
- 2023版設備管理體系標準
評論
0/150
提交評論