版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年福州墨爾本理工職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知原命題“兩個(gè)無理數(shù)的積仍是無理數(shù)”,則:
(1)逆命題是“乘積為無理數(shù)的兩數(shù)都是無理數(shù)”;
(2)否命題是“兩個(gè)不都是無理數(shù)的積也不是無理數(shù)”;
(3)逆否命題是“乘積不是無理數(shù)的兩個(gè)數(shù)都不是無理數(shù)”;
其中所有正確敘述的序號(hào)是______.答案:(1)交換原命題的條件和結(jié)論得到逆命題:“乘積為無理數(shù)的兩數(shù)都是無理數(shù)”,正確.(2)同時(shí)否定原命題的條件和結(jié)論得到否命題:“兩個(gè)不都是無理數(shù)的積也不是無理數(shù)”,正確.(3)同時(shí)否定原命題的條件和結(jié)論,然后在交換條件和結(jié)論得到逆否命題:“乘積不是無理數(shù)的兩個(gè)數(shù)不都是無理數(shù)”.所以逆否命題錯(cuò)誤.故為:(1)(2).2.曲線的參數(shù)方程是(t是參數(shù),t≠0),它的普通方程是()
A.(x-1)2(y-1)=1
B.
C.
D.答案:B3.已知點(diǎn)A(1,2),直線l1:x=1+3ty=2-4t(t為參數(shù))與直線l2:2x-4y=5相交于點(diǎn)B,則A、B兩點(diǎn)之間的距離|AB|=______.答案:將x=1+3t,y=2-4t代入2x-4y=5,得t=12,所以兩直線的交點(diǎn)坐標(biāo)為(52,0)所以|AB|=(1-52)2+(2-0)2
=52.故為:524.以雙曲線x24-y216=1的右焦點(diǎn)為圓心,且被其漸近線截得的弦長(zhǎng)為6的圓的方程為______.答案:雙曲線x24-y216=1的右焦點(diǎn)為F(25,0),一條漸近線為2x+y=0.∴所求圓的圓心為(25,0).∵所求圓被漸近線2x+y=0截得的弦長(zhǎng)為6,∴圓心為(25,0)到漸近線2x+y=0的距離d=455=4,圓半徑r=9+16=5,∴所求圓的方程是(x-25)2+y2=25.故為(x-25)2+y2=25.5.為提高廣東中小學(xué)生的健康素質(zhì)和體能水平,廣東省教育廳要求廣東各級(jí)各類中小學(xué)每年都要在體育教學(xué)中實(shí)施“體能素質(zhì)測(cè)試”,測(cè)試總成績(jī)滿分為100分.根據(jù)廣東省標(biāo)準(zhǔn),體能素質(zhì)測(cè)試成績(jī)?cè)赱85,100]之間為優(yōu)秀;在[75,85]之間為良好;在[65,75]之間為合格;在(0,60)之間,體能素質(zhì)為不合格.
現(xiàn)從佛山市某校高一年級(jí)的900名學(xué)生中隨機(jī)抽取30名學(xué)生的測(cè)試成績(jī)?nèi)缦拢?/p>
65,84,76,70,56,81,87,83,91,75,81,88,80,82,93,85,90,77,86,81,83,82,82,64,79,86,68,71,89,96.
(1)在答題卷上完成頻率分布表和頻率分布直方圖,并估計(jì)該校高一年級(jí)體能素質(zhì)為優(yōu)秀的學(xué)生人數(shù);
(2)在上述抽取的30名學(xué)生中任取2名,設(shè)ξ為體能素質(zhì)為優(yōu)秀的學(xué)生人數(shù),求ξ的分布列和數(shù)學(xué)期望(結(jié)果用分?jǐn)?shù)表示);
(3)請(qǐng)你依據(jù)所給數(shù)據(jù)和上述廣東省標(biāo)準(zhǔn),對(duì)該校高一學(xué)生的體能素質(zhì)給出一個(gè)簡(jiǎn)短評(píng)價(jià).答案:(1)由已知的數(shù)據(jù)可得頻率分布表和頻率分布直方圖如下:
分組
頻數(shù)
頻率[55,60)
1
130[60,65)
1
130[65,70)
2
230[70,75)
2
230[75,80)
4
430[80,85)
10
1030[85,90)
6
630[90,95)
3
330[95,100)
1
130根據(jù)抽樣,估計(jì)該校高一學(xué)生中體能素質(zhì)為優(yōu)秀的有1030×900=300人
…(5分)(2)ξ的可能取值為0,1,2.…(6分)P(ξ=0)=C220C230=3887,P(ξ=1)=C120C110C230=4087,P(ξ=2)=C210C230=987
…(8分)∴ξ分布列為:ξ012P38874087987…(9分)所以,數(shù)學(xué)期望Eξ=0×3887+1×4087+2×987=5887=23.…(10分)(3)根據(jù)抽樣,估計(jì)該校高一學(xué)生中體能素質(zhì)為優(yōu)秀有1030×900=300人,占總?cè)藬?shù)的13,體能素質(zhì)為良好的有1430×900=420人,占總?cè)藬?shù)的715,體能素質(zhì)為優(yōu)秀或良好的共有2430×900=720人,占總?cè)藬?shù)的45,但體能素質(zhì)為不合格或僅為合格的共有630×900=180人,占總?cè)藬?shù)的15,說明該校高一學(xué)生體能素質(zhì)良好,但仍有待進(jìn)一步提高,還需積極參加體育鍛煉.6.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命題,則x的取值范圍是______.答案:若“x∈[2,5]或x∈{x|x<1或x>4}”是假命題則它的否命題為真命題即{x|x<2或x>5}且{x|1≤x≤4}是真命題所以的取值范圍是[1,2),故為[1,2).7.如圖表示空間直角坐標(biāo)系的直觀圖中,正確的個(gè)數(shù)為()
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)答案:C8.設(shè)函數(shù)f(x)=(2a-1)x+b是R上的減函數(shù),則a的范圍為______.答案:∵f(x)=(2a-1)x+b是R上的減函數(shù),∴2a-1<0,解得a<12.故為:a<12.9.Rt△ABC中,AB=3,BC=4,AC=5,將三角形繞直角邊AB旋轉(zhuǎn)一周形成一個(gè)新的幾何體,想象幾何體的結(jié)構(gòu),畫出它的三視圖,求出它的表面積和體積.答案:以繞AB邊旋轉(zhuǎn)為例,其直觀圖、正(側(cè))視圖、俯視圖依次分別為:其表面是扇形的表面,所以其表面積為S=πRL=36π,V=13×π×BC2×AB=16π.10.若正四面體ABCD的棱長(zhǎng)為1,M是AB的中點(diǎn),則MC
?MD
=______.答案:在正四面體中,因?yàn)镸是AB的中點(diǎn),所以CM=12(CA+CB),DM=12(DA+DB),所以CM?DM=12(CA+CB)?12(DA+DB)=14(CA?DA+CB?DA+CA?DB+CB?DB)=14(1×1×cos60°+0+0+1×1×cos60°)=14×1=14.所以MC
?MD
=CM?DM=14.故為:
1
4
.11.已知直線l:kx-y+1+2k=0.
(1)證明:直線l過定點(diǎn);
(2)若直線l交x負(fù)半軸于A,交y正半軸于B,△AOB的面積為S,試求S的最小值并求出此時(shí)直線l的方程.答案:(1)證明:由已知得k(x+2)+(1-y)=0,∴無論k取何值,直線過定點(diǎn)(-2,1).(2)令y=0得A點(diǎn)坐標(biāo)為(-2-1k,0),令x=0得B點(diǎn)坐標(biāo)為(0,2k+1)(k>0),∴S△AOB=12|-2-1k||2k+1|=12(2+1k)(2k+1)=(4k+1k+4)≥12(4+4)=4.當(dāng)且僅當(dāng)4k=1k,即k=12時(shí)取等號(hào).即△AOB的面積的最小值為4,此時(shí)直線l的方程為12x-y+1+1=0.即x-2y+4=012.過點(diǎn)P(3,0)作一直線,它夾在兩條直線l1:2x-y-3=0,l2:x+y+3=0之間的線段恰被點(diǎn)P平分,該直線的方程是()
A.4x-y-6=0
B.3x+2y-7=0
C.5x-y-15=0
D.5x+y-15=0答案:C13.若向量的起點(diǎn)與終點(diǎn)M、A、B、C互不重合且無三點(diǎn)共線,且滿足下列關(guān)系(O為空間任一點(diǎn)),則能使向量成為空間一組基底的關(guān)系是()
A.
B.
C.
D.答案:C14.如圖,一個(gè)空間幾何體的正視圖、側(cè)視圖、俯視圖為全等的等腰直角三角形,如果直角三角形的直角邊長(zhǎng)為2,那么
這個(gè)幾何體的體積為()A.13B.23C.43D.2答案:根據(jù)三視圖,可知該幾何體是三棱錐,右圖為該三棱錐的直觀圖,三棱錐的底面是一個(gè)腰長(zhǎng)是2的等腰直角三角形,∴底面的面積是12×2×2=2垂直于底面的側(cè)棱長(zhǎng)是2,即高為2,∴三棱錐的體積是13×2×2=43故選C.15.已知a>b>0,則3a,3b,4a由小到大的順序是______.答案:由于指數(shù)函數(shù)y=3x在R上是增函數(shù),且a>b>0,可得3a>3b.由于冪函數(shù)y=xa在(0,+∞)上是增函數(shù),故有3a<4a,故3a,3b,4a由小到大的順序是3b<3a<4a.,故為3b<3a<4a.16.已知求證:答案:證明見解析解析:證明:17.不等式:>0的解集為A.(-2,1)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)答案:C解析:不等式:>0,∴,原不等式的解集為(-2,1)∪(2,+∞),選C。18.設(shè)集合A={1,2},則滿足A∪B={1,2,3}的集合B的個(gè)數(shù)是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},則集合B中必含有元素3,即此題可轉(zhuǎn)化為求集合A={1,2}的子集個(gè)數(shù)問題,所以滿足題目條件的集合B共有22=4個(gè).故選擇C.19.設(shè)隨機(jī)變量X的分布列為P(X=k)=,k=1,2,3,4,5,則P()等于()
A.
B.
C.
D.答案:C20.欲對(duì)某商場(chǎng)作一簡(jiǎn)要審計(jì),通過檢查發(fā)票及銷售記錄的2%來快速估計(jì)每月的銷售總額.現(xiàn)采用如下方法:從某本50張的發(fā)票存根中隨機(jī)抽一張,如15號(hào),然后按序往后將65號(hào),115號(hào),165號(hào),…發(fā)票上的銷售額組成一個(gè)調(diào)查樣本.這種抽取樣本的方法是()A.簡(jiǎn)單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.其它方式的抽樣答案:∵總體的個(gè)體比較多,抽樣時(shí)某本50張的發(fā)票存根中隨機(jī)抽一張,如15號(hào),這是系統(tǒng)抽樣中的分組,然后按序往后將65號(hào),115號(hào),165號(hào),…發(fā)票上的銷售額組成一個(gè)調(diào)查樣本.故選B.21.若e1、e2、e3是三個(gè)不共面向量,則向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?請(qǐng)說明理由.答案:解:設(shè)c=1a+2b,則即∵a、b不共線,向量a、b、c共面.22.圓錐曲線x=4secθ+1y=3tanθ的焦點(diǎn)坐標(biāo)是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函數(shù)的運(yùn)算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作雙曲線x216-y29=1向右平移1個(gè)單位得到,而雙曲線x216-y29=1的焦點(diǎn)為(-5,0),(5,0)故所求雙曲線的焦點(diǎn)為(-4,0),(6,0)故為:(-4,0),(6,0)23.設(shè)復(fù)數(shù)z滿足條件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可設(shè)z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故為424.與直線3x+4y-3=0平行,并且距離為3的直線方程為______.答案:設(shè)所求直線上任意一點(diǎn)P(x,y),由題意可得點(diǎn)P到所給直線的距離等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故為3x+4y-18=0或3x+4y+12=0.25.若f(x)=ax(a>0且a≠1)的反函數(shù)g(x)滿足:g()<0,則函數(shù)f(x)的圖象向左平移一個(gè)單位后的圖象大致是下圖中的()
A.
B.
C.
D.
答案:B26.設(shè)15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,則查得次品數(shù)的數(shù)學(xué)期望為______.答案:∵15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,∴查得次品數(shù)的數(shù)學(xué)期望為150×100015000=10.故為10.27.若關(guān)于x,y的二元一次方程組m11mxy=m+12m至多有一組解,則實(shí)數(shù)m的取值范圍是______.答案:關(guān)于x,y的二元一次方程組m11mxy=m+12m即二元一次方程組mx+y=m+1①x+my=2m②①×m-②得(m2-1)x=m(m-1)當(dāng)m-1≠0時(shí)(m2-1)x=m(m-1)至多有一組解∴m≠1故為:(-∞,1)∪(1,+∞)28.平行線3x-4y-8=0與6x-8y+3=0的距離為______.答案:6x-8y+3=0可化為3x-4y+32=0,故所求距離為|-8-32|32+(-4)2=1910,故為:191029.如圖,點(diǎn)O是平行六面體ABCD-A1B1C1D1的對(duì)角線BD1與A1C的交點(diǎn),=,=,=,則=()
A.++
B.++
C.--+
D.+-
答案:C30.用數(shù)學(xué)歸納法證明:12+22+32+…+n2=n(n+1)(2n+1)6.答案:證明:(1)當(dāng)n=1時(shí),左邊=12=1,右邊=1×2×36=1,等式成立.(4分)(2)假設(shè)當(dāng)n=k時(shí),等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,當(dāng)n=k+1時(shí),12+22+32+…+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6這就是說,當(dāng)n=k+1時(shí)等式也成立.(10分)根據(jù)(1)和(2),可知等式對(duì)任何n∈N*都成立.(12分)31.能較好地反映一組數(shù)據(jù)的離散程度的是()
A.眾數(shù)
B.平均數(shù)
C.標(biāo)準(zhǔn)差
D.極差答案:C32.某個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是()A.23B.3C.334D.332答案:由三視圖可知該幾何體是直三棱柱,高為1,底面三角形一邊長(zhǎng)為2,此邊上的高為3,所以V=Sh=12×2×3×1=3故選B.33.已知a=(1,0),b=(m,m)(m>0),則<a,b>=______.答案:∵b=(m,m)(m>0),∴b與第一象限的角平分線同向,且由原點(diǎn)指向遠(yuǎn)處,而a=(1,0)同橫軸的正方向同向,∴<a,b>=45°,故為:45°34.求證:若圓內(nèi)接四邊形的兩條對(duì)角線互相垂直,則從對(duì)角線交點(diǎn)到一邊中點(diǎn)的線段長(zhǎng)等于圓心到該邊對(duì)邊的距離.答案:以兩條對(duì)角線的交點(diǎn)為原點(diǎn)O、對(duì)角線所在直線為坐標(biāo)軸建立直角坐標(biāo)系,(如圖所示)
設(shè)A(-a,0),B(0,-b),C(c,0),D(0,d),則CD的中點(diǎn)E(c2,d2),AB的中點(diǎn)H(-a2,-b2).又圓心G到四個(gè)頂點(diǎn)的距離相等,故圓心G的橫坐標(biāo)等于AC中點(diǎn)的橫坐標(biāo),等于c-a2,圓心G的縱坐標(biāo)等于BD中點(diǎn)的縱坐標(biāo),等于d-b2.即圓心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要證的結(jié)論成立.35.如圖,割線PAB經(jīng)過圓心O,PC切圓O于點(diǎn)C,且PC=4,PB=8,則△PBC的外接圓的面積為______.答案:∵PC切圓O于點(diǎn)C,∴根據(jù)切割線定理即可得出PC2=PA?PB,∴42=8PA,解得PA=2.∴ACCB=PAPC=12∴tanB=12∴sinB=55設(shè)△PBC的外接圓的半徑為R,則455=2R,解得R=25.∴△PBC的外接圓的面積為20π故為:20π36.若lga,lgb是方程2x2-4x+1=0的兩個(gè)根,則的值等于
A.2
B.
C.4
D.答案:A37.已知正三角形的外接圓半徑為63cm,求它的邊長(zhǎng).答案:設(shè)正三角形的邊長(zhǎng)為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長(zhǎng)為18cm.38.某校有學(xué)生1
200人,為了調(diào)查某種情況打算抽取一個(gè)樣本容量為50的樣本,問此樣本若采用簡(jiǎn)單隨便機(jī)抽樣將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學(xué)生都編上號(hào)0001,0002,0003…用抽簽法做1200個(gè)形狀、大小相同的號(hào)簽,然后將這些號(hào)簽放到同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí),每次從中抽一個(gè)號(hào)簽,連續(xù)抽取50次,就得到一個(gè)容量為50的樣本.39.已知a、b、c為某一直角三角形的三條邊長(zhǎng),c為斜邊.若點(diǎn)(m,n)在直線ax+by+2c=0上,則m2+n2的最小值是______.答案:根據(jù)題意可知:當(dāng)(m,n)運(yùn)動(dòng)到原點(diǎn)與已知直線作垂線的垂足位置時(shí),m2+n2的值最小,由三角形為直角三角形,且c為斜邊,根據(jù)勾股定理得:c2=a2+b2,所以原點(diǎn)(0,0)到直線ax+by+2c=0的距離d=|0+0+2c|a2+b2=2,則m2+n2的最小值為4.故為:4.40.已知單位向量a,b的夾角為,那么|a+2b|=()
A.2
B.
C.2
D.4答案:B41.直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關(guān)系是______.答案:直線(x+1)a+(y+1)b=0化為ax+by+(a+b)=0,所以圓心點(diǎn)到直線的距離d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關(guān)系是:相交或相切.故為:相交或相切.42.給出下列四個(gè)命題,其中正確的一個(gè)是()
A.在線性回歸模型中,相關(guān)指數(shù)R2=0.80,說明預(yù)報(bào)變量對(duì)解釋變量的貢獻(xiàn)率是80%
B.在獨(dú)立性檢驗(yàn)時(shí),兩個(gè)變量的2×2列聯(lián)表中對(duì)角線上數(shù)據(jù)的乘積相差越大,說明這兩個(gè)變量沒有關(guān)系成立的可能性就越大
C.相關(guān)指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越好
D.線性相關(guān)系數(shù)r的絕對(duì)值越接近于1,表明兩個(gè)隨機(jī)變量線性相關(guān)性越強(qiáng)答案:D43.設(shè)
是不共線的向量,(k,m∈R),則A、B、C三點(diǎn)共線的充要條件是()
A.k+m=0
B.k=m
C.km+1=0
D.km-1=0答案:D44.已知球的表面積等于16π,圓臺(tái)上、下底面圓周都在球面上,且下底面過球心,圓臺(tái)的軸截面的底角為π3,則圓臺(tái)的軸截面的面積是()A.9πB.332C.33D.6答案:設(shè)球的半徑為R,由題意4πR2=16,R=2,圓臺(tái)的軸截面的底角為π3,可得圓臺(tái)母線長(zhǎng)為2,上底面半徑為1,圓臺(tái)的高為3,所以圓臺(tái)的軸截面的面積S=12(2+4)×3=33故選C45.隨機(jī)地向某個(gè)區(qū)域拋撒了100粒種子,在面積為10m2的地方有2粒種子發(fā)芽,假設(shè)種子的發(fā)芽率為100%,則整個(gè)撒種區(qū)域的面積大約有______m2.答案:設(shè)整個(gè)撒種區(qū)域的面積大約xm2,由于假設(shè)種子的發(fā)芽率為100%,所以在面積為10m2的地方有2粒種子發(fā)芽,意味著在面積為10m2的地方有2粒種子,從而有:100x=210,∴x=500,故為:500.46.若向量n與直線l垂直,則稱向量n為直線l的法向量.直線x+2y+3=0的一個(gè)法向量為()
A.(2,-1)
B.(1,-2)
C.(2,1)
D.(1,2)答案:D47.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC邊上任取一點(diǎn)M,則∠AMB≥90°的概率為______.答案:過A點(diǎn)做BC的垂線,垂足為M',當(dāng)M點(diǎn)落在線段BM'(含M'點(diǎn)不含B點(diǎn))上時(shí)∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,則∠AMB≥90°的概率p=122=14.故為:1448.(1)求過兩直線l1:7x-8y-1=0和l2:2x+17y+9=0的交點(diǎn),且平行于直線2x-y+7=0的直線方程.
(2)求點(diǎn)A(--2,3)關(guān)于直線l:3x-y-1=0對(duì)稱的點(diǎn)B的坐標(biāo).答案:(1)聯(lián)立兩條直線的方程可得:7x-8y-1=02x+17y+9=0,解得x=-1127,y=-1327所以l1與l2交點(diǎn)坐標(biāo)是(-1127,-1327).(2)設(shè)與直線2x-y+7=0平行的直線l方程為2x-y+c=0因?yàn)橹本€l過l1與l2交點(diǎn)(-1127,-1327).所以c=13所以直線l的方程為6x-3y+1=0.點(diǎn)P(-2,3)關(guān)于直線3x-y-1=0的對(duì)稱點(diǎn)Q的坐標(biāo)(a,b),則b-3a+2×3=-1,且3×a-22-b+32-1=0,解得a=10且b=-1,對(duì)稱點(diǎn)的坐標(biāo)(10,-1)49.圓錐的側(cè)面展開圖是一個(gè)半徑長(zhǎng)為4的半圓,則此圓錐的底面半徑為
______.答案:設(shè)圓錐的底面半徑為R,則由題意得,2πR=π×4,即R=2,故為:2.50.已知一種材料的最佳加入量在110g到210g之間.若用0.618法安排試驗(yàn),則第一次試點(diǎn)的加入量可以是(
)g。答案:171.8或148.2第2卷一.綜合題(共50題)1.如果直線l1,l2的斜率分別為二次方程x2-4x+1=0的兩個(gè)根,那么l1與l2的夾角為()
A.
B.
C.
D.答案:A2.已知α、β均為銳角,若p:sinα<sin(α+β),q:α+β<π2,則p是q的()A.充分而不必要條件B.必要而不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)sinα<sin(α+β)時(shí),α+β<π2不一定成立故sinα<sin(α+β)?α+β<π2,為假命題;而若α+β<π2,則由正弦函數(shù)在(0,π2)單調(diào)遞增,易得sinα<sin(α+β)成立即α+β<π2?sinα<sin(α+β)為真命題故p是q的必要而不充分條件故選B.3.關(guān)于生活中的圓錐曲線,有下面幾個(gè)結(jié)論:
(1)標(biāo)準(zhǔn)田徑運(yùn)動(dòng)場(chǎng)的內(nèi)道是一個(gè)橢圓;
(2)接受衛(wèi)星轉(zhuǎn)播的電視信號(hào)的天線設(shè)備,其軸截面與天線設(shè)備的交線是拋物線;
(3)大型熱電廠的冷卻通風(fēng)塔,其軸截面與通風(fēng)塔的交線是雙曲線;
(4)地球圍繞太陽運(yùn)行的軌跡可以近似地看成一個(gè)橢圓.
其中正確命題的序號(hào)是______(把你認(rèn)為正確命題的序號(hào)都填上).答案:(1)標(biāo)準(zhǔn)田徑運(yùn)動(dòng)場(chǎng)的內(nèi)道是有直道和彎道部分是半圓組成,不是橢圓.故錯(cuò)誤(2)接受衛(wèi)星轉(zhuǎn)播的電視信號(hào)的天線設(shè)備,其軸截面與天線設(shè)備的交線是拋物線.故正確.(3)大型熱電廠的冷卻通風(fēng)塔,其軸截面與通風(fēng)塔的交線是雙曲線.故正確.(4)地球圍繞太陽運(yùn)行的軌跡可以近似地看成一個(gè)橢圓.故正確.故為:(2)(3)(4)4.已知橢圓的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在x軸上,短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2組成的三角形的周長(zhǎng)為4+23,且∠F1BF2=2π3,求橢圓的標(biāo)準(zhǔn)方程.答案::設(shè)長(zhǎng)軸長(zhǎng)為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長(zhǎng)為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標(biāo)準(zhǔn)方程為x24+y2=1.5.圓(x+3)2+(y-1)2=25上的點(diǎn)到原點(diǎn)的最大距離是()
A.5-
B.5+
C
D.10答案:B6.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時(shí),應(yīng)選用()
A.散點(diǎn)圖
B.莖葉圖
C.頻率分布直方圖
D.頻率分布折線圖答案:A7.今天為星期六,則今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余數(shù)是1故今天為星期六,則今天后的第22010天是星期日故選D8.如圖,AD是圓內(nèi)接三角形ABC的高,AE是圓的直徑,AB=6,AC=3,則AE×AD等于
______.答案:∵AE是直徑∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故為32.9.解不等式logx(2x+1)>logx2.答案:當(dāng)0<x<1,logx(2x+1)>logx2?0<2x+1<20<x<1,解得0<x<12;當(dāng)x>1,logx(2x+1)>logx2?2x+1>2x>1,解得x>1.綜上所述,原不等式的解集為{x|0<x<12或x>1}.10.已知圓的極坐標(biāo)方程ρ=2cosθ,直線的極坐標(biāo)方程為ρcosθ-2ρsinθ+7=0,則圓心到直線距離為
______.答案:由ρ=2cosθ?ρ2=2ρcosθ?x2+y2-2x=0?(x-1)2+y2=1,ρcosθ-2ρsinθ+7=0?x-2y+7=0,∴圓心到直線距離為:d=1-2×0+712+22=855.故為:855.11.過點(diǎn)(-1,3)且平行于直線x-2y+3=0的直線方程為()
A.x-2y+7=0
B.2x+y-1=0
C.x-2y-5=0
D.2x+y-5=0答案:A12.命題“若ab=0,則a、b中至少有一個(gè)為零”的逆否命題是
______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個(gè)為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個(gè)為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:若a≠0,且b≠0,則ab≠0.13.已知方程(1+k)x2-(1-k)y2=1表示焦點(diǎn)在x軸上的雙曲線,則k的取值范圍為(
)
A.-1<k<1
B.k>1
C.k<-1
D.k>1或k<-1答案:A14.設(shè)a,b∈R.“a=O”是“復(fù)數(shù)a+bi是純虛數(shù)”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件答案:因?yàn)閍,b∈R.“a=O”時(shí)“復(fù)數(shù)a+bi不一定是純虛數(shù)”.“復(fù)數(shù)a+bi是純虛數(shù)”則“a=0”一定成立.所以a,b∈R.“a=O”是“復(fù)數(shù)a+bi是純虛數(shù)”的必要而不充分條件.故選B.15.如果執(zhí)行如圖的程序框圖,那么輸出的S=______.答案:根據(jù)題意可知該循環(huán)體運(yùn)行4次第一次:i=2,s=4,第二次:i=3,s=10,第三次:i=4,s=22,第四次:i=5,s=46,因?yàn)閕=5>4,結(jié)束循環(huán),輸出結(jié)果S=46.故為:46.16.如圖,直線AB經(jīng)過⊙O上的點(diǎn)C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連接EC、CD.
(1)求證:直線AB是⊙O的切線;
(2)若tan∠CED=12,⊙O的半徑為3,求OA的長(zhǎng).答案:(1)如圖,連接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切線;(2)∵BC是圓O切線,且BE是圓O割線,∴BC2=BD?BE,∵tan∠CED=12,∴CDEC=12.∵△BCD∽△BEC,∴BDBC=CDEC=12,設(shè)BD=x,BC=2x.又BC2=BD?BE,∴(2x)2=x?(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).17.雙曲線x2-4y2=4的兩個(gè)焦點(diǎn)F1、F2,P是雙曲線上的一點(diǎn),滿足·=0,則△F1PF2的面積為()
A.1
B.
C.2
D.答案:A18.已知曲線C1,C2的極坐標(biāo)方程分別為ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<π2),則曲線C1與C2交點(diǎn)的極坐標(biāo)為______.答案:我們通過聯(lián)立解方程組ρcosθ=3ρ=4cosθ(ρ≥0,0≤θ<π2)解得ρ=23θ=π6,即兩曲線的交點(diǎn)為(23,π6).故填:(23,π6).19.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎(jiǎng),有人走訪了四位歌手,甲說:“是乙或丙獲獎(jiǎng).”乙說:“甲、丙都未獲獎(jiǎng).”丙說:“我獲獎(jiǎng)了.”丁說:“是乙獲獎(jiǎng).”四位歌手的話只有兩句是對(duì)的,則獲獎(jiǎng)的歌手是()A.甲B.乙C.丙D.丁答案:若甲是獲獎(jiǎng)的歌手,則都說假話,不合題意.若乙是獲獎(jiǎng)的歌手,則甲、乙、丁都說真話,丙說假話,不符合題意.若丁是獲獎(jiǎng)的歌手,則甲、丁、丙都說假話,乙說真話,不符合題意.故獲獎(jiǎng)的歌手是丙故先C20.已知實(shí)數(shù)x,y滿足3x+4y+10=0,那么x2+y2的最小值為______.答案:設(shè)P(x,y),則|OP|=x2+y2,即x2+y2的幾何意義表示為直線3x+4y+10=0上的點(diǎn)P到原點(diǎn)的距離的最小值.則根據(jù)點(diǎn)到直線的距離公式得點(diǎn)P到直線3x+4y+10=0的距離d=|10|32+42=105=2.故為:2.21.已知△ABC和點(diǎn)M滿足.若存在實(shí)數(shù)使得成立,則m=()
A.2
B.3
C.4
D.5答案:B22.命題“梯形的兩對(duì)角線互相不平分”的命題形式為()A.p或qB.p且qC.非pD.簡(jiǎn)單命題答案:記命題p:梯形的兩對(duì)角線互相平分,
而原命題是“梯形的兩對(duì)角線互相不平分”,是命題p的否定形式
故選C23.若=(2,-3,1)是平面α的一個(gè)法向量,則下列向量中能作為平面α的法向量的是()
A.(0,-3,1)
B.(2,0,1)
C.(-2,-3,1)
D.(-2,3,-1)答案:D24.寫出按從小到大的順序重新排列x,y,z三個(gè)數(shù)值的算法.答案:算法如下:(1).輸入x,y,z三個(gè)數(shù)值;(2).從三個(gè)數(shù)值中挑出最小者并換到x中;(3).從y,z中挑出最小者并換到y(tǒng)中;(4).輸出排序的結(jié)果.25.直線l:y-1=k(x-1)和圓C:x2+y2-2y=0的關(guān)系是()
A.相離
B.相切或相交
C.相交
D.相切答案:C26.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1.
(1)求A1C與DB所成角的大??;
(2)求二面角D-A1B-C的余弦值;
(3)若點(diǎn)E在A1B上,且EB=1,求EC與平面ABCD所成角的大小.答案:(1)如圖建立空間直角坐標(biāo)系C-xyz,則C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB?CA1|DB|?|CA1|=02?3=0.∴A1C與DB所成角的大小為90°.(2)設(shè)平面A1BD的法向量n1=(x,y,z),則n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一個(gè)法向量n2=(1,0,-1),∴cos<n1,n2>=n1?n2|n1|?|n2|=26=63,∴二面角D-A1B-C的余弦值為63.(3)設(shè)n=(0,0,1)是平面ABCD的一個(gè)法向量,且CE=(22,1,22),∴cos<n,CE>=n?CE|n|?|CE|=12,∴<n,CE>=60°,∴EC與平面ABCD所成的角是30°.27.A、B是直線l上的兩點(diǎn),AB=4,AC⊥l于A,BD⊥l于B,AC=BD=3,又AC與BD成60°的角,則C、D兩點(diǎn)間的距離是______答案:CD=CA+AB+BD,|CD|=|
CA+AB+BD|,CD=32+32+42+2×
3×3cosθ,θ=120°或60°,CD=32+32+42±32.CD=5或43故為:5或4328.已知平面上的向量PA、PB滿足|PA|2+|PB|2=4,|AB|=2,設(shè)向量PC=2PA+PB,則|PC|的最小值是
______.答案:|PA|2+|PB|2=4,|AB|=2∴|PA|2+|PB|2=|AB|2∴PA?PB=0∴PC2=4PA2+4PA?PB+PB2=3PA2+4≥4∴|PC|≥2故為2.29.已知=1-ni,其中m,n是實(shí)數(shù),i是虛數(shù)單位,則m+ni=(
)
A.1+2i
B.1-2i
C.2+i
D.2-i答案:C30.三棱錐A-BCD中,平面ABD與平面BCD的法向量分別為n1,n2,若<n1,n2>=,則二面角A-BD-C的大小為()
A.
B.
C.或
D.或答案:C31.對(duì)任意的實(shí)數(shù)k,直線y=kx+1與圓x2+y2=2
的位置關(guān)系一定是()
A.相離
B.相切
C.相交但直線不過圓心
D.相交且直線過圓心答案:C32.設(shè)P、Q為兩個(gè)非空實(shí)數(shù)集合,定義集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},則P+Q中元素的個(gè)數(shù)是______.答案:∵a∈P,b∈Q,∴a可以為0,2,5三個(gè)數(shù),b可以為1,2,6三個(gè)數(shù),∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8個(gè)元素.故為8.33.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個(gè)矩陣變換,其中O是坐標(biāo)原點(diǎn),n∈N*.已知OP1=(2,0),則OP2011的坐標(biāo)為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標(biāo)不變,縱坐標(biāo)構(gòu)成以0為首項(xiàng),2為公差的等差數(shù)列∴OP2011的坐標(biāo)為(2,4020)故為:(2,4020)34.從四個(gè)公司按分層抽樣的方法抽取職工參加知識(shí)競(jìng)賽,其中甲公司共有職工96人.若從甲、乙、丙、丁四個(gè)公司抽取的職工人數(shù)分別為12,21,25,43,則這四個(gè)公司的總?cè)藬?shù)為()
A.101
B.808
C.1212
D.2012答案:B35.點(diǎn)(2,-2)的極坐標(biāo)為______.答案:∵點(diǎn)(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴點(diǎn)(2,-2)的極坐標(biāo)為(22,-π4)故為(22,-π4).36.選修4-1:幾何證明選講
如圖,D,E分別為△ABC的邊AB,AC上的點(diǎn),且不與△ABC的頂點(diǎn)重合.已知AE的長(zhǎng)為m,AC的長(zhǎng)為n,AD,AB的長(zhǎng)是關(guān)于x的方程x2-14x+mn=0的兩個(gè)根.
(Ⅰ)證明:C,B,D,E四點(diǎn)共圓;
(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圓的半徑.
答案:(I)連接DE,根據(jù)題意在△ADE和△ACB中,AD×AB=mn=AE×AC,即ADAC=AEAB又∠DAE=∠CAB,從而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四點(diǎn)共圓.(Ⅱ)m=4,n=6時(shí),方程x2-14x+mn=0的兩根為x1=2,x2=12.故AD=2,AB=12.取CE的中點(diǎn)G,DB的中點(diǎn)F,分別過G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點(diǎn),連接DH.∵C,B,D,E四點(diǎn)共圓,∴C,B,D,E四點(diǎn)所在圓的圓心為H,半徑為DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=12(12-2)=5.故C,B,D,E四點(diǎn)所在圓的半徑為5237.拋物線y2=8x的焦點(diǎn)坐標(biāo)是______答案:拋物線y2=8x,所以p=4,所以焦點(diǎn)(2,0),故為(2,0)..38.點(diǎn)O是四邊形ABCD內(nèi)一點(diǎn),滿足OA+OB+OC=0,若AB+AD+DC=λAO,則λ=______.答案:設(shè)BC中點(diǎn)為E,連接OE.則OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三點(diǎn)都在BC邊的中線上,且|AO|=2|OE|,所以O(shè)為△ABC重心.AB+AD+DC=
AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故為:3.39.如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,若輸出S的值為254,則判斷框①中應(yīng)填入的條件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是輸出滿足條件S=2+22+23+…+2n=126時(shí)S的值∵2+22+23+…+27=254,故最后一次進(jìn)行循環(huán)時(shí)n的值為7,故判斷框中的條件應(yīng)為n≤7.故選C.40.按ABO血型系統(tǒng)學(xué)說,每個(gè)人的血型為A、B、O、AB型四種之一,依血型遺傳學(xué),當(dāng)且僅當(dāng)父母中至少有一人的血型是AB型時(shí),子女的血型一定不是O型,若某人的血型為O型,則其父母血型的所有可能情況有()
A.12種
B.6種
C.10種
D.9種答案:D41.如圖,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M為AB邊上的一個(gè)動(dòng)點(diǎn),求PM的最小值.答案:過C作CM⊥AB,連接PM,因?yàn)镻C⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此時(shí)PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.42.參數(shù)方程(t是參數(shù))表示的圖象是()
A.射線
B.直線
C.圓
D.雙曲線答案:A43.若命題p:2是偶數(shù);命題q:2是5的約數(shù),則下列命題中為真命題的是()A.p∧qB.(¬p)∧(¬q)C.¬pD.p∨q答案:∵2是偶數(shù),∴命題p為真命題∵2不是5的約數(shù),∴命題q為假命題∴p或q為真命題故選D44.設(shè)a,b是不共線的兩個(gè)向量,已知=2+m,=+,=-2.若A,B,D三點(diǎn)共線,則m的值為()
A.1
B.2
C.-2
D.-1答案:D45.已知兩直線的方程分別為l1:x+ay+b=0,l2:x+cy+d=0,它們?cè)谧鴺?biāo)系中的位置如圖所示()
A.b>0,d<0,a<c
B.b>0,d<0,a>c
C.b<0,d>0,a<c
D.b<0,d>0,a>c
答案:D46.一個(gè)水平放置的平面圖形,其斜二測(cè)直觀圖是一個(gè)等腰梯形,其底角為45°,腰和上底均為1(如圖),則平面圖形的實(shí)際面積為______.答案:恢復(fù)后的原圖形為一直角梯形,上底為1,高為2,下底為1+2,S=12(1+2+1)×2=2+2.故為:2+247.已知a≠0,證明關(guān)于x的方程ax=b有且只有一個(gè)根.答案:證明:一方面,∵ax=b,且a≠0,方程兩邊同除以a得:x=ba,∴方程ax=b有一個(gè)根x=ba,另一方面,假設(shè)方程ax=b還有一個(gè)根x0且x0≠ba,則由此不等式兩邊同乘以a得ax0≠b,這與假設(shè)矛盾,故方程ax=b只有一個(gè)根.綜上所述,方程ax=b有且只有一個(gè)根.48.已知橢圓的焦點(diǎn)是F1、F2,P是橢圓上的一個(gè)動(dòng)點(diǎn),如果延長(zhǎng)F1P到Q,使得|PQ|=|PF2|,那么動(dòng)點(diǎn)Q的軌跡是______.答案:解析:∵|PF1|+|PF2|=2a,|PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a,即|F1Q|=2a,∴動(dòng)點(diǎn)Q到定點(diǎn)F1的距離等于定長(zhǎng)2a,故動(dòng)點(diǎn)Q的軌跡是圓.故:圓.49.直線(t為參數(shù))的傾斜角等于()
A.
B.
C.
D.答案:A50.寫出下列命題非的形式:
(1)p:函數(shù)f(x)=ax2+bx+c的圖象與x軸有唯一交點(diǎn);
(2)q:若x=3或x=4,則方程x2-7x+12=0.答案:(1)函數(shù)f(x)=ax2+bx+c的圖象與x軸沒有交點(diǎn)或至少有兩個(gè)交點(diǎn).(2)若x=3或x=4,則x2-7x+12≠0.第3卷一.綜合題(共50題)1.某種肥皂原零售價(jià)每塊2元,凡購買2塊以上(包括2塊),商場(chǎng)推出兩種優(yōu)惠銷售辦法。第一種:一塊肥皂按原價(jià),其余按原價(jià)的七折銷售;第二種:全部按原價(jià)的八折銷售。你在購買相同數(shù)量肥皂的情況下,要使第一種方法比第二種方法得到的優(yōu)惠多,最少需要買(
)塊肥皂。
A.5
B.2
C.3
D.4答案:D2.下表為廣州亞運(yùn)會(huì)官方票務(wù)網(wǎng)站公布的幾種球類比賽的門票價(jià)格,某球迷賽前準(zhǔn)備1200元,預(yù)訂15張下表中球類比賽的門票。比賽項(xiàng)目票價(jià)(元/場(chǎng))足球
籃球
乒乓球100
80
60若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,該球迷想預(yù)訂上表中三種球類比賽門票,其中籃球比賽門票數(shù)與乒乓球比賽門票數(shù)相同,且籃球比賽門票的費(fèi)用不超過足球比賽門票的費(fèi)用,求可以預(yù)訂的足球比賽門票數(shù)。答案:解:設(shè)預(yù)訂籃球比賽門票數(shù)與乒乓球比賽門票數(shù)都是n(n∈N*)張,則足球比賽門票預(yù)訂(15-2n)張,由題意得解得由n∈N*,可得n=5,∴15-2n=5∴可以預(yù)訂足球比賽門票5張。3.已知O是正方形ABCD對(duì)角線的交點(diǎn),在以O(shè),A,B,C,D這5點(diǎn)中任意一點(diǎn)為起點(diǎn),另一點(diǎn)為終點(diǎn)的所有向量中,
(1)與BC相等的向量有
______;
(2)與OB長(zhǎng)度相等的向量有
______;
(3)與DA共線的向量有
______.答案:如圖:(1)與BC相等的向量有AD.(2)與OB長(zhǎng)度相等的向量有OA、OC、OD、AO、CO、DO.(3)與DA共線的向量有
CB、BC.4.設(shè)k>1,則關(guān)于x,y的方程(1-k)x2+y2=k2-1所表示的曲線是()
A.長(zhǎng)軸在x軸上的橢圓
B.長(zhǎng)軸在y軸上的橢圓
C.實(shí)軸在x軸上的雙曲線
D.實(shí)軸在y軸上的雙曲線答案:D5.已知圓(x+2)2+y2=36的圓心為M,設(shè)A為圓上任一點(diǎn),N(2,0),線段AN的垂直平分線交MA于點(diǎn)P,則動(dòng)點(diǎn)P的軌跡是()
A.圓
B.橢圓
C.雙曲線
D.拋物線答案:B6.從數(shù)字1,2,3,4,5中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù),這個(gè)兩位數(shù)大于40的概率()A.15B.25C.35D.45答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件是從數(shù)字1,2,3,4,5中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù),共有A52=20種結(jié)果,滿足條件的事件可以列舉出有,41,41,43,45,54,53,52,51共有8個(gè),根據(jù)古典概型概率公式得到P=820=25,故選B.7.點(diǎn)O是四邊形ABCD內(nèi)一點(diǎn),滿足OA+OB+OC=0,若AB+AD+DC=λAO,則λ=______.答案:設(shè)BC中點(diǎn)為E,連接OE.則OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三點(diǎn)都在BC邊的中線上,且|AO|=2|OE|,所以O(shè)為△ABC重心.AB+AD+DC=
AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故為:3.8.某水產(chǎn)試驗(yàn)廠實(shí)行某種魚的人工孵化,10000個(gè)卵能孵化出7645尾魚苗.根據(jù)概率的統(tǒng)計(jì)定義解答下列問題:
(1)求這種魚卵的孵化概率(孵化率);
(2)30000個(gè)魚卵大約能孵化多少尾魚苗?
(3)要孵化5000尾魚苗,大概得準(zhǔn)備多少魚卵?(精確到百位)答案:(1)這種魚卵的孵化概率為:764510000=0.7645(2)由(1)知,30000個(gè)魚卵大約能孵化:30000×0.7645=22935尾魚苗(3)要孵化5000尾魚苗,需準(zhǔn)備50000.7645=6500個(gè)魚卵.9.已知變量a,b已被賦值,要交換a、b的值,應(yīng)采用的算法是()
A.a(chǎn)=b,b=a
B.a(chǎn)=c,b=a,c=b
C.a(chǎn)=c,b=a,c=a
D.c=a,a=b,b=c答案:D10.定義平面向量之間的一種運(yùn)算“⊙”如下:對(duì)任意的=(m,n),=(p,q)
,令⊙=mq-np,下面說法錯(cuò)誤的序號(hào)是()
①若若a與共線,則⊙=0
②⊙=⊙a(bǔ)
③對(duì)任意的λ∈R,有(λ)⊙=λ(⊙)
④(⊙)2+(a)2=||2||2
A.②
B.①②
C.②④
D.③④答案:A11.設(shè)雙曲線的焦點(diǎn)在x軸上,兩條漸近線為y=±12x,則雙曲線的離心率e=______.答案:依題意可知ba=12,求得a=2b∴c=a2+b2=5b∴e=ca=52故為52.12.已知圓C的圓心為(1,1),半徑為1.直線l的參數(shù)方程為x=2+tcosθy=2+tsinθ(t為參數(shù)),且θ∈[0,π3],點(diǎn)P的直角坐標(biāo)為(2,2),直線l與圓C交于A,B兩點(diǎn),求|PA|?|PB||PA|+|PB|的最小值.答案:圓C的普通方程是(x-1)2+(y-1)2=1,將直線l的參數(shù)方程代入并化簡(jiǎn)得t2+2(sinθ+cosθ)t+1=0,由直線參數(shù)方程的幾何意義得|PA|+|PB|=2|sinθ+cosθ|,|PA|?|PB|=1所以|PA|?|PB||PA|+|PB|=122|sin(θ+π4)|,θ∈[0,π3],當(dāng)θ=π4時(shí),|PA|?|PB||PA|+|PB|取得最小值122×1=24,所以|PA|?|PB||PA|+|PB|的最小值是24.13.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內(nèi),則m的取值范圍是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B14.已知x1、x2是關(guān)于x1的方程x2-(k-2)x+k2+3k+5=0的兩個(gè)實(shí)根,那么x12+x22的最大值是[
]
A.19
B.17
C.
D.18答案:D15.已知A(2,1,1),B(1,1,2),C(2,0,1),則下列說法中正確的是()A.A,B,C三點(diǎn)可以構(gòu)成直角三角形B.A,B,C三點(diǎn)可以構(gòu)成銳角三角形C.A,B,C三點(diǎn)可以構(gòu)成鈍角三角形D.A,B,C三點(diǎn)不能構(gòu)成任何三角形答案:∵|AB|=2,|BC|=3,|AC|=1,∴|BC|2=|AC|2+|AB|2,∴A,B,C三點(diǎn)可以構(gòu)成直角三角形,故選A.16.將函數(shù)y=sin(x+)的圖象按向量=(-m,0)平移所得的圖象關(guān)于y軸對(duì)稱,則m最小正值是
(
)
A.
B.
C.
D.答案:A17.函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和為a,則a的值為
______.答案:∵y=ax與y=loga(x+1)具有相同的單調(diào)性.∴f(x)=ax+loga(x+1)在[0,1]上單調(diào),∴f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化簡(jiǎn)得1+loga2=0,解得a=12故為:1218.是x1,x2,…,x100的平均數(shù),a是x1,x2,…,x40的平均數(shù),b是x41,x42,…,x100的平均數(shù),則下列各式正確的是()
A.=
B=
C.=a+b
D.答案:A19.已知斜二測(cè)畫法得到的直觀圖△A′B′C′是正三角形,畫出原三角形的圖形.答案:由斜二測(cè)法知:B′C′不變,即BC與B′C′重合,O′A′由傾斜45°變?yōu)榕cx軸垂直,并且O′A′的長(zhǎng)度變?yōu)樵瓉淼?倍,得到OA,由此得到原三角形的圖形ABC.20.下列命題中為真命題的是(
)
A.平行直線的傾斜角相等
B.平行直線的斜率相等
C.互相垂直的兩直線的傾斜角互補(bǔ)
D.互相垂直的兩直線的斜率互為相反數(shù)答案:A21.已知三角形ABC的一個(gè)頂點(diǎn)A(2,3),AB邊上的高所在的直線方程為x-2y+3=0,角B的平分線所在的直線方程為x+y-4=0,求此三角形三邊所在的直線方程.答案:由題意可得AB邊的斜率為-2,由點(diǎn)斜式求得AB邊所在的直線方程為y-3=-2(x-2),即2x+y-7=0.由2x+y-7=0x+y-4=0
求得x=3y=1,故點(diǎn)B的坐標(biāo)為(3,1).設(shè)點(diǎn)A關(guān)于角B的平分線所在的直線方程為x+y-4=0的對(duì)稱點(diǎn)為M(a,b),則M在BC邊所在的直線上.則由b-3a-2=-1a+22+b+32-4=0
求得a=1b=2,故點(diǎn)M(1,2),由兩點(diǎn)式求得BC的方程為y-12-1=x-31-3,即x+2y-5=0.再由x-2y+3=0x+2y-5=0求得點(diǎn)C的坐標(biāo)為(2,52),由此可得得AC的方程為x=2.22.已知兩組樣本數(shù)據(jù)x1,x2,…xn的平均數(shù)為h,y1,y2,…ym的平均數(shù)為k,則把兩組數(shù)據(jù)合并成一組以后,這組樣本的平均數(shù)為()
A.
B.
C.
D.答案:B23.下表是關(guān)于某設(shè)備的使用年限(年)和所需要的維修費(fèi)用y(萬元)的幾組統(tǒng)計(jì)數(shù)據(jù):
x23456y2.23.85.56.57.0(1)請(qǐng)?jiān)诮o出的坐標(biāo)系中畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y=
bx+
a;
(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用為多少?
(參考數(shù)值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根據(jù)所給的數(shù)據(jù),得到對(duì)應(yīng)的點(diǎn)的坐標(biāo),寫出點(diǎn)的坐標(biāo),在坐標(biāo)系描出點(diǎn),得到散點(diǎn)圖,(2)∵5i=1xi2=4+9+16+25+36=90
且.x=4,.y=5,n=5,∴?b=112.3-5×4×590-5×16=12.310=1.23?a=5-1.23×4=0.08∴回歸直線為y=1.23x+0.08.(3)當(dāng)x=10時(shí),y=1.23×10+0.08=12.38,所以估計(jì)當(dāng)使用10年時(shí),維修費(fèi)用約為12.38萬元.24.“△ABC中,若∠C=90°,則∠A、∠B都是銳角”的否命題為()
A.△ABC中,若∠C≠90°,則∠A、∠B都不是銳角
B.△ABC中,若∠C≠90°,則∠A、∠B不都是銳角
C.△ABC中,若∠C≠90°,則∠A、∠B都不一定是銳角
D.以上都不對(duì)答案:B25.參數(shù)方程x=2cosαy=3sinα(a為參數(shù))化成普通方程為______.答案:∵x=2cosαy=3sinα,∴cosα=x2sinα=y3∴(x2)2+(y3)2=cos2α+sin2α=1.即:參數(shù)方程x=2cosαy=3sinα化成普通方程為:x24+y29=1.故為:x24+y29=1.26.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長(zhǎng)AB和DC相交于點(diǎn)P,若PBPA=12,PCPD=13,則BCAD的值為______.答案:因?yàn)锳,B,C,D四點(diǎn)共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因?yàn)椤螾為公共角,所以△PBC∽△PAB,所以PBPD=PCPA=BCAD.設(shè)OB=x,PC=y,則有x3y=y2x?x=6y2,所以BCAD=x3y=66.故填:66.27.有以下四個(gè)結(jié)論:
①lg(lg10)=0;
②lg(lne)=0;
③若e=lnx,則x=e2;
④ln(lg1)=0.
其中正確的是()
A.①②
B.①②③
C.①②④
D.②③④答案:A28.已知a=20.5,,,則a,b,c的大小關(guān)系是()
A.a(chǎn)>c>b
B.a(chǎn)>b>c
C.c>b>a
D.c>a>b答案:B29.某學(xué)校準(zhǔn)備調(diào)查高三年級(jí)學(xué)生完成課后作業(yè)所需時(shí)間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會(huì)的同學(xué)隨機(jī)對(duì)24名同學(xué)進(jìn)行調(diào)查;第二種由教務(wù)處對(duì)年級(jí)的240名學(xué)生編號(hào),由001到240,請(qǐng)學(xué)號(hào)最后一位為3的同學(xué)參加調(diào)查,則這兩種抽樣方式依次為()A.分層抽樣,簡(jiǎn)單隨機(jī)抽樣B.簡(jiǎn)單隨機(jī)抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡(jiǎn)單隨機(jī)抽樣,系統(tǒng)抽樣答案:學(xué)生會(huì)的同學(xué)隨機(jī)對(duì)24名同學(xué)進(jìn)行調(diào)查,是簡(jiǎn)單隨機(jī)抽樣,對(duì)年級(jí)的240名學(xué)生編號(hào),由001到240,請(qǐng)學(xué)號(hào)最后一位為3的同學(xué)參加調(diào)查,是系統(tǒng)抽樣,故選D30.直線x+1=0的傾斜角是______.答案:直線x+1=0與x軸垂直,所以直線的傾斜角為90°.故為:90°.31.某賽季,甲、乙兩名籃球運(yùn)動(dòng)員都參加了7場(chǎng)比賽,他們所有比賽得分的情況用如圖所示的莖葉圖表示,則甲、乙兩名運(yùn)動(dòng)員得分的平均數(shù)分別為()A.14、12B.13、12C.14、13D.12、14答案:.x甲=8+9+6+15+17+19+247=14,.x乙=8+5+7+11+13+15+257=12.故選A.32.如圖,在平行四邊形OABC中,點(diǎn)C(1,3).
(1)求OC所在直線的斜率;
(2)過點(diǎn)C做CD⊥AB于點(diǎn)D,求CD所在直線的方程.答案:(1)∵點(diǎn)O(0,0),點(diǎn)C(1,3),∴OC所在直線的斜率為kOC=3-01-0=3.(2)在平行四邊形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直線的斜率為kCD=-13.∴CD所在直線方程為y-3=-13(x-1),即x+3y-10=0.33.“a2+b2≠0”的含義為()A.a(chǎn)和b都不為0B.a(chǎn)和b至少有一個(gè)為0C.a(chǎn)和b至少有一個(gè)不為0D.a(chǎn)不為0且b為0,或b不為0且a為0答案:a2+b2≠0的等價(jià)條件是a≠0或b≠0,即兩者中至少有一個(gè)不為0,對(duì)照四個(gè)選項(xiàng),只有C與此意思同,C正確;A中a和b都不為0,是a2+b2≠0充分不必要條件;B中a和b至少有一個(gè)為0包括了兩個(gè)數(shù)都是0,故不對(duì);D中只是兩個(gè)數(shù)僅有一個(gè)為0,概括不全面,故不對(duì);故選C34.“∵四邊形ABCD為矩形,∴四邊形ABCD的對(duì)角線相等”,補(bǔ)充以上推理的大前提為()
A.正方形都是對(duì)角線相等的四邊形
B.矩形都是對(duì)角線相等的四邊形
C.等腰梯形都是對(duì)角線相等的四邊形
D.矩形都是對(duì)邊平行且相等的四邊形答案:B35.若拋物線y2=4x上一點(diǎn)P到其焦點(diǎn)的距離為3,則點(diǎn)P的橫坐標(biāo)等于______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點(diǎn)到焦點(diǎn)的距離與到準(zhǔn)線的距離是相等的,∴|MF|=3=x+p2=3,∴x=2,故為:2.36.如圖,CD是⊙O的直徑,AE切⊙O于點(diǎn)B,連接DB,若∠D=20°,則∠DBE的大小為()
A.20°
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 七年級(jí)學(xué)有余力學(xué)生的教學(xué)方法研究
- 《土壤地理學(xué)》筆記
- 2025年湖北省高考數(shù)學(xué)模擬試卷(附答案解析)
- 數(shù)據(jù)遷移與轉(zhuǎn)換
- 閱讀理解記敘文(練習(xí))(學(xué)生版)-2025年高考英語一輪復(fù)習(xí)(新教材新高考)
- 湖北省襄陽市襄州區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期9月月考英語試題(含答案)
- 2024年18-萘二甲酰亞胺項(xiàng)目投資申請(qǐng)報(bào)告代可行性研究報(bào)告
- 有理數(shù)的乘方(六大題型)-2024-2025學(xué)年滬教版六年級(jí)數(shù)學(xué)上冊(cè)同步練習(xí)
- 3.2 二次函數(shù) 同步練習(xí)
- 讀書交流會(huì)主持詞
- 期中模擬測(cè)試卷3(試題)-2024-2025學(xué)年四年級(jí)上冊(cè)數(shù)學(xué)(福建)
- 安徽省合肥市肥西縣西苑中學(xué)2023-2024學(xué)年八年級(jí)上學(xué)期期中數(shù)學(xué)試卷
- 人教版(PEP)三年級(jí)英語上冊(cè)2024期中考試(無答案)
- 憲法與法律學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 《數(shù)學(xué)三年級(jí)上學(xué)期數(shù)學(xué)期中試卷》
- 方寸之間 課件 2024-2025學(xué)年蘇少版(2024)初中美術(shù)七年級(jí)上冊(cè)
- 2024-2025學(xué)年人教版七年級(jí)地理上學(xué)期 期中知識(shí)清單:第一章 地球
- 寵物飼料購銷合同模板
- Unit4《This is my friend》-2024-2025學(xué)年三年級(jí)上冊(cè)英語單元測(cè)試卷(譯林版三起 2024新教材)
- 《 合唱指揮案頭工作、排練與舞臺(tái)呈現(xiàn)的遞進(jìn)構(gòu)建》范文
- 《交換與路由技術(shù)》 課件 第5部分 路由器基礎(chǔ)
評(píng)論
0/150
提交評(píng)論